de Bartolomeis, Paolo Symplectic deformations of Kähler manifolds. (English) Zbl 1119.58011 J. Symplectic Geom. 3, No. 3, 341-355 (2005). For a compact symplectic manifold the cohomology space \(H^2(M,\mathbb R)\) represents the formal tangent space of the moduli space of germs of symplectic deformation. For a Kähler manifold the author provides a complete description of the subset of \(H^2(M,\mathbb R)\) corresponding to Kähler deformations. Examples including the \(2n\)-torus are discussed. Reviewer: Christian Günther (Libby) Cited in 3 Documents MSC: 58H15 Deformations of general structures on manifolds 53C55 Global differential geometry of Hermitian and Kählerian manifolds Keywords:Kähler manifolds; symplectic deformations; moduli space PDF BibTeX XML Cite \textit{P. de Bartolomeis}, J. Symplectic Geom. 3, No. 3, 341--355 (2005; Zbl 1119.58011) Full Text: DOI Euclid