zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational iteration method -- some recent results and new interpretations. (English) Zbl 1119.65049
Summary: This paper is an elementary introduction to the concepts of variational iteration method. First, the main concepts in variational iteration method, such as general Lagrange multiplier, restricted variation, correction functional, are explained heuristically. Subsequently, the solution procedure is systematically addressed, in particular, for nonlinear oscillators. Particular attention is paid throughout the paper to give an intuitive grasp for the method. The main motivation is to put things together in a convenient form for later reference and systematic use.

65J15Equations with nonlinear operators (numerical methods)
65H05Single nonlinear equations (numerical methods)
47J25Iterative procedures (nonlinear operator equations)
34L05General spectral theory for OD operators
34A34Nonlinear ODE and systems, general
65K10Optimization techniques (numerical methods)
49J15Optimal control problems with ODE (existence)
Full Text: DOI
[1] Abdou, M. A.; Soliman, A. A.: New applications of variational iteration method. Physica D 211, No. 1 -- 2, 1-8 (2005) · Zbl 1084.35539
[2] Abdou, M. A.; Soliman, A. A.: Variational iteration method for solving burger’s and coupled burger’s equations. J. comput. Appl. math. 181, No. 2, 245-251 (2005) · Zbl 1072.65127
[3] Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A.: The solution of nonlinear coagulation problem with mass loss. Chaos solitons fractals 29, No. 2, 313-330 (2006) · Zbl 1101.82018
[4] E.M. Abulwafa, M.A. Abdou, A.A. Mahmoud, Nonlinear fluid flows in pipe-like domain problem using variational-iteration method, Chaos Solitons Fractals, in press, doi:10.1016/j.chaos.2005.11.050. · Zbl 1128.76019
[5] Bildik, N.; Konuralp, A.: The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. Internat. J. Nonlinear sci. Numer. simulation 7, No. 1, 65-70 (2006) · Zbl 1115.65365
[6] Draganescu, G. E.; Capalnasan, V.: Nonlinear relaxation phenomena in polycrystalline solids. Internat. J. Nonlinear sci. Numer. simulation 4, No. 3, 219-225 (2003)
[7] Draganescu, Gh.E.; Cofan, N.; Rujan, D. L.: Nonlinear vibration of a nano sized sensor with fractional damping. J. optoelectron. Adv. mater. 7, No. 2, 877-884 (2005)
[8] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. methods appl. Mech. eng. 167, No. 1 -- 2, 57-68 (1998) · Zbl 0942.76077
[9] He, J. H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. methods appl. Mech. eng. 167, No. 1 -- 2, 69-73 (1998) · Zbl 0932.65143
[10] He, J. H.: Variational iteration method --- a kind of non-linear analytical technique: some examples. Internat. J. Nonlinear mech. 34, No. 4, 699-708 (1999) · Zbl 05137891
[11] He, J. H.: Variational iteration method for autonomous ordinary differential systems. Appl. math. Comput. 114, No. 2 -- 3, 115-123 (2000) · Zbl 1027.34009
[12] J.H. He, Generalized Variational Principles in Fluids, Science & Culture Publishing House of China, 2003 ( in Chinese). · Zbl 1054.76001
[13] He, J. H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern phys. B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039
[14] He, J. H.: Non-perturbative methods for strongly nonlinear problems. (2006)
[15] He, J. H.; Wu, X. H.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos solitons fractals 29, No. 1, 108-113 (2006) · Zbl 1147.35338
[16] Inokuti, M.; Sekine, H.; Mura, T.: General use of the Lagrange multiplier in nonlinear mathematical physics. Variational method in the mechanics of solids, 156-162 (1978)
[17] Marinca, V.: An approximate solution for one-dimensional weakly nonlinear oscillations. Internat. J. Nonlinear sci. Numer. simulation 3, No. 2, 107-120 (2002) · Zbl 1079.34028
[18] M. Moghimi, F.S.A. Hejazi, Variational iteration method for solving generalized Burger -- Fisher and Burger equations, Chaos Solitons Fractals, in press, doi:10.1016/j.chaos.2006.03.0331. · Zbl 1138.35398
[19] Momani, S.; Abuasad, S.: Application of he’s variational iteration method to Helmholtz equation. Chaos solitons fractals 27, No. 5, 1119-1123 (2006) · Zbl 1086.65113
[20] S. Momani, Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, in press, doi:10.1016/j.chaos.2005.10.068. · Zbl 1137.65450
[21] S. Momani, Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A 355 (4 -- 5) (2006) 271 -- 279. · Zbl 05675858
[22] Odibat, Z. M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Internat. J. Nonlinear sci. Numer. simulation 7, No. 1, 27-34 (2006) · Zbl 05675858
[23] Soliman, A. A.: Numerical simulation of the generalized regularized long wave equation by he’s variational iteration method. Math. comput. Simulation 70, No. 2, 119-124 (2005) · Zbl 1152.65467
[24] Soliman, A. A.: A numerical simulation and explicit solutions of KdV-Burgers and Lax’s seventh-order KdV equations. Chaos solitons fractals 29, No. 2, 294-302 (2006) · Zbl 1099.35521
[25] N.H. Sweilam, M.M. Khader, Variational iteration method for one dimensional nonlinear thermoelasticity, Chaos Solitons Fractals, in press, doi:10.1016/j.chaos.2005.11.028. · Zbl 1131.74018
[26] M. Tatari, M. Dehghan, He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation, Chaos Solitons Fractals, in press, doi:10.1016/j.chaos.2006.01.059. · Zbl 1131.65084
[27] Wazwaz, A. M.: A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems. Comput. math. Appl. 41, No. 10 -- 11, 1237-1244 (2001) · Zbl 0983.65090