zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An improved harmony search algorithm for solving optimization problems. (English) Zbl 1119.65053
Summary: This paper develops an improved harmony search (IHS) algorithm for solving optimization problems. IHS employs a novel method for generating new solution vectors that enhances accuracy and convergence rate of the harmony search (HS) algorithm. In this paper the impacts of constant parameters on the harmony search algorithm are discussed and a strategy for tuning these parameters is presented. The IHS algorithm has been successfully applied to various benchmarking and standard engineering optimization problems. Numerical results reveal that the proposed algorithm can find better solutions when compared to HS and other heuristic or deterministic methods and is a powerful search algorithm for various engineering optimization problems.

65K05Mathematical programming (numerical methods)
90C30Nonlinear programming
90C59Approximation methods and heuristics
Full Text: DOI
[1] Geem, Z. W.; Kim, J. H.; Loganathan, G. V.: A new heuristic optimization algorithm: harmony search. Simulation 76, No. 2, 60-68 (2001)
[2] Kim, J. H.; Geem, Z. W.; Kim, E. S.: Parameter estimation of the nonlinear muskingum model using harmony search. J. am. Water resour. Assoc. 37, No. 5, 1131-1138 (2001)
[3] Geem, Z. W.; Kim, J. H.; Loganathan, G. V.: Harmony search optimization: application to pipe network design. Int. J. Model. simul. 22, No. 2, 125-133 (2002)
[4] Kang, S. L.; Geem, Z. W.: A new structural optimization method based on the harmony search algorithm. Comput. struct. 82, No. 9 -- 10, 781-798 (2004)
[5] Z.W. Geem, C. Tseng, Y. Park, Harmony search for generalized orienteering problem: best touring in China, in: Springer Lecture Notes in Computer Science, vol. 3412, 2005, pp. 741 -- 750.
[6] Lee, K. S.; Geem, Z. W.: A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Comput. meth. Appl. mech. Eng. 194, 3902-3933 (2004) · Zbl 1096.74042
[7] Arora, J. S.: Introduction to optimum design. (1989)
[8] Coello, C. A. C.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. eng. Informatics 16, 193-203 (2002)
[9] A.D. Belegundu, A Study of Mathematical Programming Methods for Structural Optimization, PhD thesis, Department of Civil and Environmental Engineering, University of Iowa, Iowa, 1982.
[10] Coello, C. A. C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. meth. Appl. mech. Eng. 191, 1245-1287 (2002) · Zbl 1026.74056
[11] Deb, K.; Gene, A. S.: A robust optimal design technique for mechanical component design. Evolutionary algorithms in engineering applications, 497-514 (1997)
[12] Kannan, B. K.; Kramer, S. N.: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. mech. Des. trans. ASME 116, 318-320 (1994)
[13] Coello, C. A. C.: Constraint-handling using an evolutionary multiobjective optimization technique. Civ. eng. Environ. syst. 17, 319-346 (2000)
[14] Wu, S. J.; Chow, P. T.: Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Eng. optim. 24, 137-159 (1995)
[15] Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. mech. Des. ASME 112, 223-229 (1990)
[16] Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. meth. Appl. mech. Eng. 186, 311-338 (2000) · Zbl 1028.90533
[17] Deb, K.: Optimal design of a welded beam via genetic algorithms. Aiaa j. 29, No. 11 (1991)
[18] Reklaitis, G. V.; Ravindran, A.; Ragsdell, K. M.: Engineering optimization methods and applications. (1983)
[19] Siddall, J. N.: Analytical decision-making in engineering design. (1972)
[20] Ragsdell, K. M.; Phillips, D. T.: Optimal design of a class of welded structures using geometric programming. ASME J. Eng. ind. Ser. B 98, No. 3, 1021-1025 (1976)
[21] Coello, C. A. C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. ind. 41, No. 2, 113-127 (2000)
[22] Michalewicz, Z.; Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. comput. 4, No. 1, 1-32 (1996)
[23] Koziel, S.; Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. comput. 7, No. 1, 19-44 (1999)