zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving nonlinear partial differential equations using the modified variational iteration Padé technique. (English) Zbl 1119.65095
Summary: The modified variational iteration method (MVIM) is reintroduced with the enhancement of Padé approximants to lengthen the interval of convergence of VIM or MVIM when used alone in solving nonlinear problems. Korteweg-de Vries (KdV), modified KdV, Burger’s and Lax’s equations are used as examples to illustrate the effectiveness and convenience of the proposed technique.

MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q51Soliton-like equations
35Q53KdV-like (Korteweg-de Vries) equations
Software:
Mathematica
WorldCat.org
Full Text: DOI
References:
[1] Abassy, T. A.; El-Tawil, M.; Kamel, H.: The solution of KdV and mkdv equations using Adomian Padé approximation. Internat. J. Nonlinear sci. Numer. simulation 5, No. 4, 327-339 (2004)
[2] T.A. Abassy, M. El-Tawil, H. Kamel, The solution of Burgers’ and good Boussinesq equations using ADM --- Padé technique, Chaos, Solitons Fractals, in press.
[3] T.A. Abassy, M. El-Tawil, H. El Zoheiry, Toward a modified variational iteration method, J. Comput. Appl. Math., accepted for publication. · Zbl 1119.65096
[4] Abdou, M. A.; Soliman, A. A.: Variational iteration method for solving burger’s and coupled burger’s equations. J. comput. Appl. math. 181, No. 2, 245-251 (2005) · Zbl 1072.65127
[5] Adomian, G.: Solving frontier problem of physics: the decomposition method. (1994) · Zbl 0802.65122
[6] Baker, G. A.: Essentials of Padé approximants. (1975) · Zbl 0315.41014
[7] P.G. Drazin, R.S. Jonson, Soliton: An Introduction, Cambridge, New York, 1993.
[8] El-Tawil, M. A.; Elbahnasawi, A. A.; Abdelnaby, A.: Solving Riccati differential equations using Adomian decomposition method. J. appl. Math. comput. 157, No. 2, 503-514 (2004)
[9] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. methods appl. Mech. eng. 167, No. 1 -- 2, 57-68 (1998) · Zbl 0942.76077
[10] He, J. H.: Variational iteration method --- a kind of non-linear analytical technique: some examples. Internat. J. Non-linear mech. 34, No. 4, 699-708 (1999) · Zbl 05137891
[11] He, J. H.: Homotopy perturbation technique. Comput. methods appl. Mech. eng. 178, No. 3 -- 4, 257-262 (1999) · Zbl 0956.70017
[12] He, J. H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Internat. J. Non-linear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[13] He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems. Internat. J. Nonlinear sci. Numer. simulation 6, No. 2, 207-208 (2005)
[14] He, J. H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos, solitons fractals 26, No. 3, 695-700 (2005) · Zbl 1072.35502
[15] He, J. H.; Wu, Xh.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos, solitons fractals 29, No. 1, 108-113 (2006) · Zbl 1147.35338
[16] J.H. He, Non-perturbative methods for strongly nonlinear problems, dissertation. de-Verlag im Internet GmbH, Berlin, 2006.
[17] He, J. H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern phys. B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039
[18] Parkes, E. J.; Duffy, B. R.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. phys. Comm. 98, 288-300 (1996) · Zbl 0948.76595
[19] Su, C. H.; Gardner, C. S.: Derivation of the Korteweg -- de Vries and Burgers equation. J. math. Phys. 10, 536-539 (1969) · Zbl 0283.35020