Algorithms for the fractional calculus: a selection of numerical methods. (English) Zbl 1119.65352

Summary: Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.


65L05 Numerical methods for initial value problems involving ordinary differential equations
26A33 Fractional derivatives and integrals
34A34 Nonlinear ordinary differential equations and systems
65D32 Numerical quadrature and cubature formulas
65D25 Numerical differentiation
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)


Full Text: DOI Link


[2] Bagley, R. L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 201-210 (1983) · Zbl 0515.76012
[3] Brass, H.; Fischer, J.-W.; Petras, K., The Gaussian quadrature method, Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 47, 115-150 (1996) · Zbl 0935.65013
[4] Caputo, M., Linear models of dissipation whose \(Q\) is almost frequency independent-II, Geophys. J. Roy. Astron. Soc., 13, 529-539 (1967)
[5] Caputo, M.; Mainardi, F., Linear models of dissipation in anelastic solids, Rivista del Nuovo Cimento, 1, 161-198 (1971)
[7] Diethelm, K., Generalized compound quadrature formulae for finite-part integrals, IMA J. Numer. Anal., 17, 479-493 (1997) · Zbl 0871.41021
[8] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003
[9] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 3-22 (2002) · Zbl 1009.65049
[11] Diethelm, K.; Freed, A. D., On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity, (Keil, F.; Mackens, W.; Voß, H.; Werther, J., Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties (1999), Springer: Springer Heidelberg), 217-224
[12] Diethelm, K.; Walz, G., Numerical solution of fractional order differential equations by extrapolation, Numer. Algorith., 16, 231-253 (1997) · Zbl 0926.65070
[14] Elliott, D., An asymptotic analysis of two algorithms for certain Hadamard finite-part integrals, IMA J. Numer. Anal., 13, 445-462 (1993) · Zbl 0780.65014
[16] Ford, N. J.; Simpson, A. C., The numerical solution of fractional differential equations: Speed versus accuracy, Numer. Algorith., 26, 333-346 (2001) · Zbl 0976.65062
[19] Gaul, L.; Klein, P.; Kempfle, S., Damping description involving fractional operators, Mech. Syst. Signal Process., 5, 81-88 (1991)
[20] Glöckle, W. G.; Nonnenmacher, T. F., A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68, 46-53 (1995)
[22] Gorenflo, R.; Loutchko, I.; Luchko, Yu., Computation of the Mittag-Leffler function \(E_{α,β}(z)\) and its derivatives, Fract. Calculus Appl. Anal., 5, 491-518 (2002), erratum, 6 (2003) 111-112 · Zbl 1027.33016
[24] Gorenflo, R.; Rutman, R., On ultraslow and intermediate processes, (Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions, Sofia 1994 (1995), Science Culture Technology: Science Culture Technology Singapore), 61-81 · Zbl 0923.34005
[25] Hart, J. F.; Cheney, E. W.; Lawson, C. L.; Maehly, H. J.; Mesztenyi, C. K.; Rice, J. R.; Thacher, H. G.; Witzgall, C., Computer approximations, The SIAM series in applied mathematics (1968), John Wiley & Sons: John Wiley & Sons New York · Zbl 0174.20402
[26] de Hoog, F.; Weiss, R., Asymptotic expansions for product integration, Math. Comput., 27, 295-306 (1973) · Zbl 0303.65023
[27] Kilbas, A. A.; Trujillo, J. J., Differential equations of fractional order: Methods, results and problems-I, Appl. Anal., 78, 153-192 (2001) · Zbl 1031.34002
[28] Kronrod, A. S., Integration with control of accuracy, Sov. Phys. Doklady, 9, 1, 17-19 (1964) · Zbl 0131.15003
[34] Marks, R. J.; Hall, M. W., Differintegral interpolation from a bandlimited signal’s samples, IEEE Trans. Acoust. Speech. Signal Process., 29, 872-877 (1981) · Zbl 0525.65005
[36] Metzler, R.; Schick, W.; Kilian, H.-G.; Nonnenmacher, T. F., Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103, 7180-7186 (1995)
[37] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), John Wiley & Sons: John Wiley & Sons New York · Zbl 0789.26002
[38] Mittag-Leffler, G., Sur la représentation analytique d’une branche uniforme d’une fonction monogène, Acta Math., 29, 101-168 (1904) · JFM 36.0469.02
[39] Nonnenmacher, T. F.; Metzler, R., On the Riemann-Liouville fractional calculus and some recent applications, Fractals, 3, 557-566 (1995) · Zbl 0868.26004
[42] Olmstead, W. E.; Handelsman, R. A., Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Rev., 18, 275-291 (1976) · Zbl 0323.45008
[46] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus Appl. Anal., 5, 367-386 (2002) · Zbl 1042.26003
[47] Podlubny, I.; Dorcak, L.; Misanek, J., Application of fractional-order derivatives to calculation of heat load intensity change in blast furnace walls, Trans. Tech. Univ. Košice, 5, 137-144 (1995)
[50] Ross, B., The development of fractional calculus 1695-1900, Hist. Math., 4, 75-89 (1977) · Zbl 0358.01008
[51] Samko, S. G.; Kilbas, A.; Marichev, O. I., Fractional integrals and derivatives: Theory and applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[52] Unser, M.; Blu, T., Fractional splines and wavelets, SIAM Rev., 42, 43-67 (2000) · Zbl 0940.41004
[53] Unser, M., Wavelet theory demystified, IEEE Trans. Signal Process., 51, 470-483 (2003) · Zbl 1369.42001
[54] Welch, S. W.J.; Ropper, R. A.L.; Duren, R. G., Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials, Mech. Time-Dependent Mater., 3, 279-303 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.