zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An explicit and numerical solutions of the fractional KdV equation. (English) Zbl 1119.65394
Summary: A fractional Korteweg-de Vries (KdV) equation with initial condition is introduced by replacing the first order time and space derivatives by fractional derivatives of order $\alpha$ and $\beta$ with $0 < \alpha ,\beta \leq$ 1, respectively. The fractional derivatives are described in the Caputo sense. The application of Adomian decomposition method, developed for differential equations of integer order, is extended to derive explicit and numerical solutions of the fractional KdV equation. The solutions of our model equation are calculated in the form of convergent series with easily computable components.

65M70Spectral, collocation and related methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M.: Korteweg-de Vries equation and generalizations. IV. method for exact solution. Commun. pure appl. Math. 27, 97-133 (1974) · Zbl 0291.35012
[2] Khater, A. H.; Helal, M. A.; El-Kalaawy, O. H.: Backland transformation: exact solutions for the KdV and the calogera-Degasperis-fokas mkdv equations. Math. meth. Appl. sci. 21, 713-719 (1998) · Zbl 0910.35114
[3] Kaya, D.; Aassila, M.: An application for a generalized KdV equation by the decomposition method. Phys. lett. A 299, 201-206 (2002) · Zbl 0996.35061
[4] Kaya, D.: On the solution of a KdV like equation by the decomposition method. Int. J. Comput. math. 72, 531-539 (1999) · Zbl 0948.65104
[5] Rasulov, M.; Coskun, E.: An efficient numerical method for solving KdV equation by a class of discontinuous functions. Appl. math. Comput. 102, 139-154 (1999) · Zbl 0933.65102
[6] Taha, T. R.; Ablowitz, M. J.: Analytical and numerical aspects of certain nonlinear evolution equations. III. numerical Korteweg-de Vries equation. J. comput. Phys. 55, No. 2, 231-253 (1984) · Zbl 0541.65083
[7] Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear dynam. 29, 145-155 (2002) · Zbl 1009.65085
[8] Henry, B. I.; Wearne, S. L.: Fractional reaction-diffusion. Physica A 276, 448-455 (2000)
[9] Klafter, J.; Blumen, A.; Shlesinger, M. F.: Fractal behavior in trapping and reaction: a random walk study. J. stat. Phys. 36, 561-578 (1984) · Zbl 0587.60062
[10] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1988) · Zbl 0671.34053
[11] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[12] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, part II. J. roy. Astr. soc. 13, 529-539 (1967)
[13] Luchko, A. Y. .; Groreflo, R.: The initial value problem for some fractional differential equations with the Caputo derivative, preprint series A08 -- 98. (1998)
[14] Mainardi, F.: Fractional calculus: ’some basic problems in continuum and statistical mechanics’. Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[15] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[16] Oldham, K. B.; Spanier, J.: The fractional calculus. (1974) · Zbl 0292.26011
[17] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008