zbMATH — the first resource for mathematics

Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces. (English) Zbl 1119.76070
Summary: We study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove a global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces \(L^{p}\), with \(p \in [1,\infty]\). Local results for arbitrary initial data are also given.

76U05 General theory of rotating fluids
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI arXiv
[1] Bony, J.-M., Calcul symbolique et propagation des singularités pour LES équations aux dérivées partielles non linéaires, Ann. école norm. sup., 14, 209-246, (1981) · Zbl 0495.35024
[2] Chae, D.; Lee, J., Global well-posedness in the supercritical dissipative quasi-geostrophic equations, Asymptot. anal., 38, 3-4, 339-358, (2004)
[3] Chemin, J.-Y., Perfect incompressible fluids, (1998), Clarendon Press, Oxford University Press New York
[4] Chemin, J.-Y., Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, J. anal. math., 77, 27-50, (1999) · Zbl 0938.35125
[5] Chen, Q.; Miao, C.; Zhang, Z., A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, arXiv: · Zbl 1142.35069
[6] Constantin, P.; Wu, J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. math. anal., 30, 937-948, (1999) · Zbl 0957.76093
[7] Constantin, P.; Majda, A.; Tabak, E., Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar, Nonlinearity, 7, 1495-1533, (1994)
[8] Constantin, P.; Córdoba, D.; Wu, J., On the critical dissipative quasi-geostrophic equation, Indiana univ. math. J., 50, 97-107, (2001) · Zbl 0989.86004
[9] Córdoba, A.; Córdoba, D., A maximum principle applied to quasi-geostrophic equations, Comm. math. phys., 249, 511-528, (2004) · Zbl 1309.76026
[10] Danchin, R., Density-dependent incompressible viscous fluids in critical spaces, Proc. roy. soc. Edinburgh, 133, 1311-1334, (2003) · Zbl 1050.76013
[11] Hmidi, T., Régularité höldérienne des poches de tourbillon visqueuses, J. math. pures appl. (9), 84, 11, 1455-1495, (2005) · Zbl 1095.35024
[12] Ju, N., Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. math. phys., 251, 365-376, (2004) · Zbl 1106.35061
[13] Ju, N., On the two-dimensional quasi-geostrophic equations, Indiana univ. math. J., 54, 3, 897-926, (2005) · Zbl 1185.35189
[14] Ju, N., Global solutions to the two-dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. ann., 334, 3, 627-642, (2006) · Zbl 1145.76053
[15] Oliver, M., The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier-Stokes equations with Besov class data in \(\mathbb{R}^2\), Commun. pure appl. anal., 1, 2, 221-235, (2002) · Zbl 1014.35076
[16] Pedlosky, J., Geophysical fluid dynamics, (1987), Springer-Verlag New York · Zbl 0713.76005
[17] S. Resnick, Dynamical problem in nonlinear advective partial differential equations, PhD thesis, University of Chicago, 1995
[18] H. Triebel, Theory of Function Spaces, Leipzig, 1983
[19] Vishik, M., Hydrodynamics in Besov spaces, Arch. ration. mech. anal., 145, 197-214, (1998) · Zbl 0926.35123
[20] Wu, J., Global solutions of the 2D dissipative quasi-geostrophic equations in Besov spaces, SIAM J. math. anal., 36, 3, 1014-1030, (2004/2005) · Zbl 1083.76064
[21] Wu, J., Solutions to the 2D quasi-geostrophic equations in Hölder spaces, Nonlinear anal., 62, 579-594, (2005) · Zbl 1116.35348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.