zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global analysis of an epidemic model with nonmonotone incidence rate. (English) Zbl 1119.92042
Summary: We study an epidemic model with nonmonotonic incidence rate, which describes the psychological effect of certain serious diseases on the community when the number of infectives is getting larger. By carrying out a global analysis of the model and studying the stability of the disease-free equilibrium and the endemic equilibrium, we show that either the number of infective individuals tends to zero as time evolves or the disease persists.

MSC:
92C60Medical epidemiology
37N25Dynamical systems in biology
34C60Qualitative investigation and simulation of models (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Alexander, M. E.; Moghadas, S. M.: Periodicity in an epidemic model with a generalized non-linear incidence. Math. biosci. 189, 75 (2004) · Zbl 1073.92040
[2] Capasso, V.; Serio, G.: A generalization of the kermack -- mckendrick deterministic epidemic model. Math. biosci. 42, 43 (1978) · Zbl 0398.92026
[3] Derrick, W. R.; Den Driessche, P. Van: A disease transmission model in a nonconstant population. J. math. Biol. 31, 495 (1993) · Zbl 0772.92015
[4] Gumel, A. B.: Modelling strategies for controlling SARS outbreaks. Proc. R. Soc. lond. B 271, 2223 (2004)
[5] Hethcote, H. W.: The mathematics of infectious disease. SIAM rev. 42, 599 (2000) · Zbl 0993.92033
[6] Hethcote, H. W.; Levin, S. A.: Periodicity in epidemiological models. Applied mathematical ecology, 193 (1989)
[7] Hethcote, H. W.; Den Driessche, P. Van: Some epidemiological models with nonlinear incidence. J. math. Biol. 29, 271 (1991) · Zbl 0722.92015
[8] Leung, G. M.: The impact of community psychological response on outbreak control for severe acute respiratory syndrome in Hong Kong. J. epidemiol. Commun. health 57, 857 (2003)
[9] Liu, W. M.; Hethcote, H. W.; Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. math. Biol. 25, 359 (1987) · Zbl 0621.92014
[10] Liu, W. M.; Levin, S. A.; Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. math. Biol. 23, 187 (1986) · Zbl 0582.92023
[11] Perko, L.: Differential equations and dynamical systems. (1996) · Zbl 0854.34001
[12] Ruan, S.; Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. differ. Equations 188, 135 (2003) · Zbl 1028.34046
[13] Wang, W.; Ruan, S.: Simulating the SARS outbreak in Beijing with limited data. J. theoret. Biol. 227, 369 (2004)
[14] Z.-F. Zhang, T.-R. Ding, W.-Z. Huang, Z.-X. Dong, Qualitative theory of differential equations, Transl. Math. Monogr. vol. 101, Amer. Math. Soc., Providence, 1992.