Donnay, V. J. Creating transverse homoclinic connections in planar billiards. (English. Russian original) Zbl 1120.37040 J. Math. Sci., New York 128, No. 2, 2747-2753 (2005); translation from Zap. Nauchn. Semin. POMI 300, 122-134 (2003). Summary: Given a planar billiard system containing stable and unstable manifolds that intersect nontransversely, we show how to make a local perturbation to the boundary that causes the intersection to become transverse. We apply these ideas to billiards inside an ellipse. Cited in 4 Documents MSC: 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010) 37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010) 70K44 Homoclinic and heteroclinic trajectories for nonlinear problems in mechanics 37D10 Invariant manifold theory for dynamical systems Keywords:planar billiard system; stable and unstable manifolds; local perturbation × Cite Format Result Cite Review PDF Full Text: DOI References: [1] M. Bialy, ”Convex billiards and a theorem by E. Hopf,” Math. Z., 214, No.1, 147–154 (1993). · Zbl 0790.58023 · doi:10.1007/BF02572397 [2] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York (1982). [3] A. Delshams and R. Ramirez-Ros, ”Poincare-Melnikov-Arnold method for analytic planar maps,” Nonlinearity, 9, No.1, 1–26 (1996). · Zbl 0887.58029 · doi:10.1088/0951-7715/9/1/001 [4] A. Delshams and R. Ramirez-Ros, ”On Birkhoff’s conjecture about convex billiards,” in: Proceedings of the 2nd Catalan Days on Applied Mathematics (Odeillo, 1995), Presses Univ. Perpignan, Perpignan (1995), pp. 85–94. · Zbl 0911.58021 [5] V. J. Donnay, ”Using integrability to produce chaos: billiards with positive entropy,” Comm. Math. Phys., 141, 225–257 (1991). · Zbl 0744.58041 · doi:10.1007/BF02101504 [6] V. J. Donnay, ”Transverse homoclinic connections for geodesic flows,” in: Hamiltonian Dynamical Systems (Cincinnati, 1992), Springer, New York (1995), pp. 115–125. · Zbl 0835.58027 [7] M. M. Dvorin and V. F. Lazutkin, ”Existence of an infinite number of elliptic and hyperbolic periodic trajectories for convex billiards,” Funkts. Anal. Prilozhen., 7, No.2, 20–27 (1973). · Zbl 0298.58006 [8] V. Gelfreich, ”A century of separatrices splitting in Hamiltonian dynamical systems: perturbation theory, exponential smallness,” in: XIII International Congress on Mathematical Physics, Int. Press, Boston-London (2000), pp. 73–86. · Zbl 1026.37053 [9] V. Gelfreich and V. F. Lazutkin, ”Splitting of separatrices: perturbation theory and exponential smallness,” Uspekhi Mat. Nauk, 56, No.3, 79–142 (2001). · Zbl 1071.37039 [10] N. Innami, ”Geometry of geodesics for convex billiards and circular billiards,” Nihonkai Math. J., 13, No.1, 73–120 (2002). · Zbl 1035.37027 [11] G. I. Kim, ”Elliptic Birkhoff’s billiards with C 2-generic global perturbations,” Bull. Korean Math. Soc., 36, No.1, 147–159 (1999). · Zbl 0934.34036 [12] G. Knieper and H. Weiss, ”A surface with positive curvature and positive topological entropy,” J. Differential Geom., 39, No.2, 229–249 (1994). · Zbl 0809.53043 [13] H. E. Lomeli, ”Perturbations of elliptic billiards,” Phys. D, 99, No.1, 59–80 (1996). · Zbl 0890.58081 · doi:10.1016/S0167-2789(96)00061-9 [14] G. Paternain, ”Real analytic convex surfaces with positive topological entropy and rigid body dynamics,” Manuscripta Math., 78, No.4, 397–402 (1993). · Zbl 0791.58073 · doi:10.1007/BF02599321 [15] D. Petroll, Existenz und Transversalitat von Homoklinen und Heteroklinen Orbits beim Geodatischen Fluss, Thesis, Universitat Freiburg (1996). [16] Ya. G. Sinai, Introduction to Ergodic Theory, Princeton Univ. Press, Princeton (1976). [17] M. B. Tabanov, ”Separatrices splitting for Birkhoff’s billiard in symmetric convex domain, closed to an ellipse,” Chaos, 4, No.4, 595–606 (1994). · Zbl 1055.37551 · doi:10.1063/1.166037 [18] M. Wojtkowski, ”Principles for the design of billiards with nonvanishing Lyapunov exponent,” Comm. Math. Phys., 105, 319–414 (1986). · Zbl 0602.58029 · doi:10.1007/BF01205934 [19] M. Wojtkowski, ”Two applications of Jacobi fields to the billiard ball problem,” J. Differential Geom., 40, No.1, 155–164 (1994). · Zbl 0812.58067 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.