Gonchenko, S. V.; Shil’nikov, L. P. On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. (English. Russian original) Zbl 1120.37041 J. Math. Sci., New York 128, No. 2, 2767-2773 (2005); translation from Zap. Nauchn. Semin. POMI 300, 155-166 (2003). Summary: We study the semilocal dynamics of two-dimensional symplectic diffeomorphisms with homoclinic tangencies. Conditions for the existence of infinitely many generic elliptic periodic orbits of successive periods starting with some integer are found. Cited in 7 Documents MSC: 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010) 37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion 37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010) 37C29 Homoclinic and heteroclinic orbits for dynamical systems 37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics 37G25 Bifurcations connected with nontransversal intersection in dynamical systems Keywords:semilocal dynamics; symplectic diffeomorphisms × Cite Format Result Cite Review PDF Full Text: DOI References: [1] S. V. Gonchenko and L. P. Shilnikov, ”On two-dimensional analytic area-preserving diffeomorphisms with infinitely many stable elliptic periodic points,” Regul. Chaotic Dyn., 2, Nos. 3/4, 106–123 (1997). · Zbl 1083.37524 [2] S. V. Gonchenko and L. P. Shilnikov, ”On two-dimensional area-preserving diffeomorphisms with infinitely many elliptic islands,” J. Statist. Phys., 101, Nos. 1/2, 321–356 (2000). · Zbl 0987.37062 · doi:10.1023/A:1026418323000 [3] S. V. Gonchenko and L. P. Shilnikov, ”Invariants of {\(\Omega\)}-conjugacy of diffeomorphisms with a structurally unstable homoclinic trajectory,” Ukrainian Math. J., 42, No.2, 134–140 (1990). · Zbl 0705.58044 · doi:10.1007/BF01071004 [4] S. V. Gonchenko and L. P. Shilnikov, ”On moduli of systems with a structurally unstable homoclinic Poincaré curve,” Izv. Russian Akad. Nauk, 41, 417–445 (1992). · Zbl 0801.58034 · doi:10.1070/IM1993v041n03ABEH002270 [5] S. V. Gonchenko and L. P. Shilnikov, ”On dynamical systems with structurally unstable homoclinic curves,” Soviet Math. Dokl., 33, No.1, 234–238 (1986). · Zbl 0625.34054 [6] S. V. Gonchenko and L. P. Shilnikov, ”Arithmetic properties of topological invariants of systems with a structurally unstable homoclinic trajectory,” Ukrainian Math. J., 39, No.1, 21–28 (1987). · Zbl 0635.58025 · doi:10.1007/BF01056417 [7] S. V. Gonchenko and L. P. Shilnikov, ”On two-dimensional area-preserving mappings with homoclinic tangencies,” Dokl. Akad. Nauk, 63, No.3, 395–399 (2001). · Zbl 1041.37033 [8] L. P. Shilnikov, ”On a Poincaré-Birkhoff problem,” Math. Sb. (N. S.), 3, 353–371 (1967). [9] J. Moser, ”The analytic invariants of an area-preserving mapping near a hyperbolic fixed point,” Comm. Pure Appl. Math., 9, 673–692 (1956). · Zbl 0072.40801 · doi:10.1002/cpa.3160090404 [10] N. K. Gavrilov and L. P. Shilnikov, ”On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I,” Math. Sb. (N. S.), 17, 467–485 (1972); II, 19, 139–156 (1973). · Zbl 0255.58006 [11] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Sci. Publishing, River Edge (1998). · Zbl 0941.34001 [12] S. V. Gonchenko and L. P. Shilnikov, ”On geometrical properties of two-dimensional diffeomorphisms with homoclinic tangencies,” Internat. J. Bifur. Chaos, 5, No.3, 819–829 (1995). · Zbl 0885.58062 · doi:10.1142/S0218127495000600 [13] V. S. Afraimovich and L. P. Shilnikov, ”Strange attractors and quasiattractors,” in: Nonlinear Dynamics and Turbulence, G. I. Barenblatt, G. Iooss, and D. D. Joseph (eds.), Pitman, Boston (1983), pp. 1–34. [14] V. S. Biragov, ”Bifurcations in a two-parameter family of conservative mappings that are close to the Hénon map,” Selecta Math. Soviet., 9, 273–282 (1990). · Zbl 0727.58028 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.