Galgani, L.; Giorgilli, A. Recent results on the Fermi-Pasta-Ulam problem. (English. Russian original) Zbl 1120.37049 J. Math. Sci., New York 128, No. 2, 2761-2766 (2005); translation from Zap. Nauchn. Semin. POMI 300, 145-154 (2003). Summary: We revisit the celebrated model of Fermi, Pasta, and Ulam with the purpose of investigating the thresholds to equipartition in the thermodynamic limit. Starting with a particular class of initial conditions, i.e., with all the energy on the first mode, we observe that in a short time the system splits into two separate subsystems. We conjecture the existence of a function \(\varepsilon_c(\omega)\), independent of the number \(N\) of particles in the chain, such that if the initial energy \(E\) satisfies \(E/N< \varepsilon_c(\omega)\), then only the packet of modes with frequency not exceeding \(\omega\) shares most of the energy. MSC: 37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics) 37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion 82C05 Classical dynamic and nonequilibrium statistical mechanics (general) Keywords:Hamilton system; stable states; equipartition; thermodynamic limit; subsystems × Cite Format Result Cite Review PDF Full Text: DOI References: [1] E. Fermi, J. Pasta, and S. Ulam,”Studies of nonlinear problems,” Los Alamos document LA-1940 (1955). · Zbl 0353.70028 [2] F. M. Izrailev and B. V. Chirikov, ”Statistical properties of a nonlinear string,” Dokl. Akad. Nauk.SSSR, 166, 57–59 (1966). [3] A. M. Kolmogorov, ”Preservation of conditionally periodic movements with small change in the Hamilton function,” Dokl. Akad. Nauk SSSR, 98, 527–530 (1954). · Zbl 0056.31502 [4] J. Moser, ”On invariant curves of area-preserving mappings of an annulus,” Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II, 1962, 1–20 (1962). · Zbl 0107.29301 [5] V. I. Arnold, ”Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian,” Uspekhi Mat. Nauk, 18, 13–40 (1963). [6] D. L. Shepelyansky, ”Low-energy chaos in the Fermi-Pasta-Ulam problem,” Nonlinearity, 10, 1331–1338 (1997). · Zbl 0908.58038 · doi:10.1088/0951-7715/10/5/017 [7] P. Bocchieri, A. Scotti, B. Bearzi, and A. Loinger, ”Anharmonic chain with Lennard-Jones interaction,” Phys. Rev. A, 2, 2013–2019 (1970). · doi:10.1103/PhysRevA.2.2013 [8] M. C. Carotta, C. Ferrario, G. Lo Vecchio, B. Carazza, and L. Galgani, ”New phenomenon in the stochastic transition of coupled oscillators,” Phys. Rev. A, 17, 786–794 (1978). · doi:10.1103/PhysRevA.17.786 [9] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani, ”Relaxation to different stationary states in the Fermi-Pasta-Ulam model,” Phys. Rev. A, 28, 3544–3552 (1983). · doi:10.1103/PhysRevA.28.3544 [10] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani, ”Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi-Pasta-Ulam model,” Phys. Rev. A, 31, 1039–1045 (1985). · doi:10.1103/PhysRevA.31.1039 [11] R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, ”Further results on the equipartition threshold in large nonlinear Hamiltonian systems,” Phys. Rev. A, 31, 2740–2742 (1985). · doi:10.1103/PhysRevA.31.2740 [12] S. Isola, R. Livi, S. Ruffo, and A. Vulpiani, ”Stability and chaos in Hamiltonian dynamics,” Phys. Rev. A, 33, 1163–1170 (1986). · doi:10.1103/PhysRevA.33.1163 [13] R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, ”Chaotic behaviour in nonlinear Hamiltonian systems and equilibrium statistical mechanics,” J. Statist. Phys., 48, 539–559 (1987). · Zbl 1084.37523 · doi:10.1007/BF01019687 [14] H. Kantz, ”Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems,” Phys. D, 39, 322–335 (1989). · Zbl 0693.70022 · doi:10.1016/0167-2789(89)90014-6 [15] M. Pettini and M. Landolfi, ”Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics,” Phys. Rev. A, 41, 768–783 (1990). · doi:10.1103/PhysRevA.41.768 [16] M. Pettini and M. Cerruti-Sola, ”Strong stochasticity threshold in nonlinear Hamiltonian systems: effect of mixing times,” Phys. Rev. A, 44, 975–987 (1991). · doi:10.1103/PhysRevA.44.975 [17] H. Kantz, R. Livi, and S. Ruffo, ”Equipartition thresholds in chains of anharmonic oscillators,” J. Statist. Phys., 76, 627–643 (1994). · doi:10.1007/BF02188678 [18] J. De Luca, A. J. Lichtenberg, and S. Ruffo, ”Energy transition and time scale to equipartition in the Fermi-Pasta-Ulam oscillator chain,” Phys. Rev. E, 51, 2877–2884 (1995). · doi:10.1103/PhysRevE.51.2877 [19] J. De Luca, A. J. Lichtenberg, and S. Ruffo, ”Universal evolution to equipartition in oscillator chains,” Phys. Rev. E, 54, 2329–2333 (1996). · doi:10.1103/PhysRevE.54.2329 [20] J. De Luca, A. J. Lichtenberg, and S. Ruffo, ”Finite time to equiparittion in the thermodynamic limit,” Phys. Rev. E, 60, 3781–3786 (1999). · doi:10.1103/PhysRevE.60.3781 [21] A. Giorgilli, ”Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point,” Ann. Inst. H. Poincare, 48, No.4, 423–439 (1988). · Zbl 0669.34002 [22] L. Galgani, A. Giorgilli, A. Martinoli, and S. Vanzini, ”On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates,” Phys. D, 59, 334–348 (1992). · Zbl 0775.70023 · doi:10.1016/0167-2789(92)90074-W [23] G. Benettin, L. Galgani, and A. Giorgilli, ”Exponential law for the equipartition times among translational and vibrational degrees of freedom,” Phys. Lett. A, 120, 23–27 (1987). · doi:10.1016/0375-9601(87)90258-1 [24] G. Benettin, L. Galgani, and A. Giorgilli, ”Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, part II,” Comm. Math. Phys., 121, 557–601 (1989). · Zbl 0679.70015 · doi:10.1007/BF01218157 [25] A. Carati, L. Galgani, A. Ponno, and A. Giorgilli, ”The Fermi-Pasta-Ulam problem,” Nuovo Cimento Soc. Ital. Fis. B, 117, 1017–1026 (2002). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.