zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodically forced Pielou’s equation. (English) Zbl 1120.39003
The authors consider the parametrically excited Pielou equation $$ x_{n+1}={{\beta_nx_n}\over{1+x_{n-1}}} $$ with $\{\beta_n\}_n$ a $k$-periodic sequence. Several results on the convergence of positive solutions are given. If $\{\beta_n\}_n$ is constant and equal to $\beta>1$, every positive solution converges to 0. If ${\prod_0^{k-1}\beta_i\leq 1}$ then every nonnegative solution converges to 0. If $\{\beta_n\}_n$ is positive periodic with period $2p$ ($p$ prime) and ${\prod_0^{k-1}\beta_i>1}$ then any positive solution converges to a solution that is periodic with period $2p$; the same is true for the case of period $2p+1$.

39A11Stability of difference equations (MSC2000)
39A20Generalized difference equations
Full Text: DOI
[1] Camouzis, E.; Ladas, G.: When does periodicity destroy boundedness in rational difference equations?. J. difference equ. Appl. 12, 961-979 (2006) · Zbl 1112.39003
[2] Clark, M. E.; Gross, L. J.: Periodic solutions to nonautonomous difference equations. Math. biosci. 102, 105-119 (1990) · Zbl 0712.39014
[3] Cushing, J. M.: Periodically forced nonlinear systems of difference equations. J. difference equ. Appl. 3, 547-561 (1998) · Zbl 0905.39003
[4] Cushing, J. M.; Henson, S. M.: A periodically forced beverton -- Holt equation. J. difference equ. Appl. 8, 1119-1120 (2002) · Zbl 1023.39013
[5] S. Elaydi, R.J. Sacker, Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing -- Henson conjectures, in: Proc. 8th Internat. Conf. Difference Equ. Appl., Brno, Czech Republic, 2003, in press · Zbl 1087.39504
[6] S. Elaydi, R.J. Sacker, Global stability of periodic orbits of nonautonomous difference equations and population biology, J. Difference Equ. Appl., in press · Zbl 1087.39504
[7] V.L. Kocic, A note on the nonautonomous Beverton -- Holt model, J. Difference Equ. Appl., in press · Zbl 1084.39007
[8] Kocic, V. L.; Ladas, G.: Global asymptotic behavior of nonlinear difference equations of higher order with applications. (1993) · Zbl 0787.39001
[9] M.R.S. Kulenović, O. Merino, Convergence to a period-two solution of a class of second order rational difference equations, in press · Zbl 1128.39006
[10] Kuruklis, S. A.; Ladas, G.: Oscillation and global attractivity in a discrete delay logistic model. Quart. appl. Math. 50, 227-233 (1992) · Zbl 0799.39004
[11] Kulenović, M. R. S.; Ladas, G.: Dynamics of second order rational difference equations; with open problems and applications. (2001) · Zbl 0981.39011
[12] Pielou, E. C.: An introduction to mathematical ecology. (1969) · Zbl 0259.92001
[13] Pielou, E. C.: Population and community ecology. (1974) · Zbl 0349.92024