×

zbMATH — the first resource for mathematics

On the dynamics of isometries. (English) Zbl 1120.53026
Summary: We provide an analysis of the dynamics of isometries and semicontractions of metric spaces. Certain subsets of the boundary at infinity play a fundamental role and are identified completely for the standard boundaries of CAT(0)-spaces, Gromov hyperbolic spaces, Hilbert geometries, certain pseudoconvex domains, and partially for Thurston’s boundary of Teichmüller spaces. We present several rather general results concerning groups of isometries, as well as the proof of other more specific new theorems, for example concerning the existence of free nonabelian subgroups in CAT(0)-geometry, iteration of holomorphic maps, a metric Furstenberg lemma, random walks on groups, noncompactness of automorphism groups of convex cones, and boundary behaviour of Kobayashi’s metric.

MSC:
53C24 Rigidity results
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
22F50 Groups as automorphisms of other structures
32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables
PDF BibTeX XML Cite
Full Text: DOI EuDML arXiv
References:
[1] M Abate, Iteration theory on weakly convex domains, Sem. Conf. 4, EditEl (1990) 1
[2] M Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press (1989) · Zbl 0747.32002
[3] R C Alperin, B Farb, G A Noskov, A strong Schottky lemma for nonpositively curved singular spaces, Geom. Dedicata 92 (2002) 235 · Zbl 1009.20051 · doi:10.1023/A:1019650112871
[4] W Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar 25, Birkhäuser Verlag (1995) · Zbl 0834.53003
[5] W Ballmann, M Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. (1995) · Zbl 0866.53029 · doi:10.1007/BF02698640 · numdam:PMIHES_1995__82__169_0 · eudml:104108
[6] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985) · Zbl 0591.53001
[7] Y Benoist, Convexes divisibles, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 387 · Zbl 1010.37014 · doi:10.1016/S0764-4442(01)01878-X
[8] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999) · Zbl 0988.53001
[9] A Całka, On conditions under which isometries have bounded orbits, Colloq. Math. 48 (1984) 219 · Zbl 0558.54021
[10] K Diederich, J E Fornæss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. \((2)\) 110 (1979) 575 · Zbl 0394.32012 · doi:10.2307/1971240
[11] B Farb, L Mosher, Quasi-isometric rigidity for the solvable Baumslag-Solitar groups II, Invent. Math. 137 (1999) 613 · Zbl 0931.20035 · doi:10.1007/s002220050337 · arxiv:math/9809010
[12] F Forstneri\vc, J P Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987) 239 · Zbl 0644.32013 · doi:10.1007/BF01461721 · eudml:164320
[13] H Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. \((2)\) 77 (1963) 335 · Zbl 0192.12704 · doi:10.2307/1970220
[14] M Gromov, Hyperbolic groups, Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 · Zbl 0634.20015
[15] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser (1999) · Zbl 0953.53002
[16] P de la Harpe, On Hilbert’s metric for simplices, London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 97 · Zbl 0832.52002
[17] P de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press (2000) · Zbl 0965.20025
[18] N V Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs 115, American Mathematical Society (1992) · Zbl 0776.57001
[19] N V Ivanov, Mapping class groups, North-Holland (2002) 523 · Zbl 1002.57001
[20] M Jarnicki, P Pflug, Invariant distances and metrics in complex analysis, de Gruyter Expositions in Mathematics 9, Walter de Gruyter & Co. (1993) · Zbl 0789.32001
[21] V A Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. \((2)\) 152 (2000) 659 · Zbl 0984.60088 · doi:10.2307/2661351 · www.math.princeton.edu · eudml:121788
[22] V A Kaimanovich, H Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996) 221 · Zbl 0864.57014 · doi:10.1007/s002220050074
[23] A Karlsson, Non-expanding maps and Busemann functions, Ergodic Theory Dynam. Systems 21 (2001) 1447 · Zbl 1072.37028 · doi:10.1017/S0143385701001699
[24] A Karlsson, G A Margulis, A multiplicative ergodic theorem and nonpositively curved spaces, Comm. Math. Phys. 208 (1999) 107 · Zbl 0979.37006 · doi:10.1007/s002200050750
[25] A Karlsson, G A Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. \((2)\) 48 (2002) 73 · Zbl 1046.53026
[26] A Karlsson, G A Noskov, Some groups having only elementary actions on metric spaces with hyperbolic boundaries, Geom. Dedicata 104 (2004) 119 · Zbl 1062.20047 · doi:10.1023/B:GEOM.0000022949.67521.0c
[27] S Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften, Springer (1998) · Zbl 0917.32019
[28] H Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982) 183 · Zbl 0508.30039 · doi:10.1215/S0012-7094-82-04912-2
[29] J McCarthy, A Papadopoulos, Dynamics on Thurston’s sphere of projective measured foliations, Comment. Math. Helv. 64 (1989) 133 · Zbl 0681.57002 · doi:10.1007/BF02564666 · eudml:140145
[30] C T McMullen, Coxeter groups, Salem numbers and the Hilbert metric, Publ. Math. Inst. Hautes Études Sci. (2002) 151 · Zbl 1148.20305 · doi:10.1007/s102400200001 · numdam:PMIHES_2002__95__151_0 · eudml:104181
[31] R D Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75 (1988) · Zbl 0666.47028
[32] J G Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (1994) · Zbl 0809.51001
[33] K E Ruane, Dynamics of the action of a \(\mathrm{CAT}(0)\) group on the boundary, Geom. Dedicata 84 (2001) 81 · Zbl 0984.20027 · doi:10.1023/A:1010301824765
[34] E L Swenson, A cut point theorem for \(\mathrm{CAT}(0)\) groups, J. Differential Geom. 53 (1999) 327 · Zbl 1038.20029 · euclid:jdg/1214425538 · www.intlpress.com
[35] J Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics 386, Springer (1974) · Zbl 0295.20047
[36] W Zhang, F Ren, Dynamics on weakly pseudoconvex domains, Chinese Ann. Math. Ser. B 16 (1995) 467 · Zbl 0843.58080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.