×

zbMATH — the first resource for mathematics

Supersymmetric harmonic maps into symmetric spaces. (English) Zbl 1120.53039
The paper studies supersymmetric harmonic maps from the point of view of integrable systems. Similar to the harmonic maps from \(\mathbb{R}^2\) into symmetric spaces which are known to be solutions of integrable systems, the superharmonic maps from \(\mathbb{R}^{2| 2}\) into symmetric spaces are shown to be solutions of a first elliptic integrable system in the sense of C.-L. Terng [Geometries and symmetries of soliton equations and integrable elliptic equations, arXiv: math.DG/0212372 (30 Dec. 2002)]. A Weierstrass-type representation is constructed in terms of holomorphic potentials (as well as of meromorphic potentials). Finally, it is shown that the superprimitive maps from \(\mathbb{R}^{2| 2}\) into a 4-symmetric space provide, by restriction to \(\mathbb{R}^2\), solutions of the second elliptic system associated with the previous 4-symmetric space.

MSC:
53C43 Differential geometric aspects of harmonic maps
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
58E20 Harmonic maps, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berezin, F.A., Introduction to superanalysis, (1987), D. Reidel Publishing Company
[2] Besse, A.L., Einstein manifolds, (1987), Springer-Verlag Berlin, Heidelberg, New York · Zbl 0613.53001
[3] Burstall, F.E.; Pedit, F., Harmonic maps via adler – kostant – symes theory, (), 221-272 · Zbl 0828.58021
[4] Burstall, F.E.; Rawnsley, J.H., ()
[5] ()
[6] P. Deligne, J. Morgan, Notes on Supersymmetry, in [5]
[7] P. Deligne, D. Freed, Supersolutions, in [5]
[8] Dorfmeister, J.; Pedit, F.; Wu, H.-Y., Weierstrass type representation of harmonic maps into symmetric spaces, Comm. anal. geometry, 6, 4, 633-668, (1998) · Zbl 0932.58018
[9] Fall Problem 2 posed by E. Witten, solutions by P. Deligne, D. Freed, in: Homework, in [5]
[10] Harvey, R., Spinors and calibrations, (1990), Academic Press Inc. · Zbl 0694.53002
[11] Harvey, R.; Lawson, H.B., Calibrated geometries, Acta math., 148, 47-157, (1982) · Zbl 0584.53021
[12] F. Hélein, Applications harmoniques, lois de conservations et repéres mobiles, Diderot éditeur, Paris, 1996. Harmonic Maps, Conservation Laws and Moving Frames, Cambridge University Press, 2002 · Zbl 0920.58022
[13] Hélein, F., Constant Mean curvature surfaces, harmonic maps and integrable systems, () · Zbl 1158.53301
[14] Hélein, F., Willmore immersions and loop groops, J. differential geom., 50, 2, 331-338, (1998) · Zbl 0938.53033
[15] Hélein, F.; Romon, P., Hamiltonian stationary Lagrangian surfaces in \(\mathbb{C}^2\), Comm. anal. geometry, 10, 1, 79-126, (2002) · Zbl 1007.53060
[16] Hélein, F.; Romon, P., Weierstrass representation of Lagrangian surfaces in four dimensional spaces using spinors and quaternions, Comment. math. helv., 75, 668-680, (2000) · Zbl 0973.53065
[17] Hélein, F.; Romon, P., Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric spaces, () · Zbl 1036.53058
[18] Helgason, S., Differential geometry, Lie group and symmetric spaces, (1978), Academic Press, Inc. · Zbl 0451.53038
[19] I. Khemar, Surfaces isotropes de \(\mathbb{O}\) et systèmes intégrables, preprint arXiv:math.DG/0511258
[20] Leites, D.A., Introduction to the theory of supermanifolds, Russian math. surveys, 35, 1, 1-64, (1980) · Zbl 0462.58002
[21] Manin, Y.I., ()
[22] F. O’Dea, Supersymmetric Harmonic Maps into Lie Groups, preprint arXiv:hep-th/0112091
[23] Pressley, A.; Segal, G., Loop groops, ()
[24] Rogers, A., A global theory of supermanifolds, J. math. phys., 21, 6, 1352-1365, (1980), Super Lie groups: global topology and local structure, J. Math. Phys. 22 (5) (1981) 939-945 · Zbl 0447.58003
[25] C.L. Terng, Geometries and symmetries of soliton equations and integrable elliptic equations, preprint arXiv:math.DG/0212372 · Zbl 1165.37031
[26] Uhlenbeck, K., Harmonic maps into Lie groups, J. differential geom., 30, 1-50, (1989) · Zbl 0677.58020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.