zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials. (English) Zbl 1120.65083
Summary: The quadratic Riccati differential equation is solved by {\it J.-H. He}’s variational iteration method [Int. J. Non-Linear Mech. 34, No. 4, 699--708 (1999; Zbl 05137891)] considering Adomian’s polynomials. Comparisons are made between the Adomian’s decomposition method, {\it J.-H. He}’s homotopy perturbation method [Appl. Math. Comput. 151, No. 1, 287--292 (2004; Zbl 1039.65052)] and the exact solution. In this application, we do not have secular terms, and if $\lambda$ , the Lagrange multiplier, is equal to $-1$, then the Adomian’s decomposition method is obtained. The results reveal that the proposed method is very effective and simple and can be applied for other nonlinear problems.

MSC:
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Abbasbandy, S.: Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method. Appl. math. Comput. 172, 485-490 (2006) · Zbl 1088.65063
[2] Abbasbandy, S.: Iterated he’s homotopy perturbation method for quadratic Riccati differential equation. Appl. math. Comput. 175, 581-589 (2006) · Zbl 1089.65072
[3] Abdou, M. A.; Soliman, A. A.: New applications of variational iteration method. Physica D 211, 1-8 (2005) · Zbl 1084.35539
[4] Abdou, M. A.; Soliman, A. A.: Variational iteration method for solving burger’s and coupled burger’s equations. J. comput. Appl. math. 181, 245-251 (2005) · Zbl 1072.65127
[5] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[6] Bulut, H.; Evans, D. J.: On the solution of the Riccati equation by the decomposition method. Int. J. Comput. math. 79, 103-109 (2002) · Zbl 0995.65073
[7] El-Tawil, M. A.; Bahnasawi, A. A.; Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method. Appl. math. Comput. 157, 503-514 (2004) · Zbl 1054.65071
[8] He, J. H.: A new approach to nonlinear partial differential equations. Comm. nonlinear sci. Numer. simul. 2, 230-235 (1997)
[9] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. methods appl. Mech. eng. 167, 57-68 (1998) · Zbl 0942.76077
[10] He, J. H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. methods appl. Mech. eng. 167, 69-73 (1998) · Zbl 0932.65143
[11] He, J. H.: Variational iteration method --- a kind of non-linear analytical technique: some examples. Internat. J. Nonlinear mech. 34, 699-708 (1999) · Zbl 05137891
[12] He, J. H.: Variational iteration method for autonomous ordinary differential systems. Appl. math. Comput. 114, 115-123 (2000) · Zbl 1027.34009
[13] He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Internat. J. Nonlinear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[14] He, J. H.: Variational principle for some nonlinear partial differential equations with variable coefficients. Chaos, solitons and fractals 19, 847-851 (2004) · Zbl 1135.35303
[15] He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. math. Comput. 151, 287-292 (2004) · Zbl 1039.65052
[16] He, J. H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern phys. B 20, 1141-1199 (2006) · Zbl 1102.34039
[17] J.H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, dissertation.de-Verlag im Internet GmbH, Berlin, 2006.
[18] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method. (2003)
[19] Momani, S.; Abuasad, S.: Application of he’s variational iteration method to Helmholtz equation. Chaos, solitons and fractals 27, 1119-1123 (2006) · Zbl 1086.65113
[20] Odibat, Z. M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Internat. J. Nonlinear sci. Numer. simul. 7, 27-34 (2006) · Zbl 05675858
[21] Wazwaz, A.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. math. Comput. 111, 53-69 (2000) · Zbl 1023.65108