zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New conservative schemes with discrete variational derivatives for nonlinear wave equations. (English) Zbl 1120.65096
The author considers certain classes of one-dimensional nonlinear wave equations and proposes new finite difference schemes of conservative type. The wave equations are represented as systems of first order differential equations which are discretized using discrete variational derivatives to obtain families of conservative schemes. Applications are presented for the nonlinear Klein-Gordon equation and the Boussinesq equation. Numerical examples reveal the good performance of the new schemes.

MSC:
65M06Finite difference methods (IVP of PDE)
35L70Nonlinear second-order hyperbolic equations
35Q53KdV-like (Korteweg-de Vries) equations
WorldCat.org
Full Text: DOI
References:
[1] Ben-Yu, G.; Pascual, P. J.; Rodriguez, M. J.; Vázquez, L.: Numerical solution of the sine-Gordon equation. Appl. math. Comput. 18, 1-14 (1986) · Zbl 0622.65131
[2] C.J. Budd, M.D. Piggott, Geometric integration and its applications, in: Handbook of Numerical Analysis, vol. XI, North-Holland, Amsterdam, 2003, pp. 35 -- 139. · Zbl 1062.65134
[3] Chen, J. -B.: Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the ”good” Boussinesq equation. Appl. math. Comput. 161, 55-67 (2005) · Zbl 1065.65140
[4] Fei, Z.; Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. math. Comput. 45, 17-30 (1991) · Zbl 0732.65107
[5] De Frutos, J.; Ortega, T.; Sanz-Serna, J. M.: A Hamiltonian, explicit algorithm with spectral accuracy for the ”good” Boussinesq system. Comput. meth. Appl. mech. Eng. 80, 417-423 (1990) · Zbl 0728.76072
[6] De Frutos, J.; Ortega, T.; Sanz-Serna, J. M.: Pseudospectral method for the ”good” Boussinesq equation. Math. comp. 57, 109-122 (1991) · Zbl 0735.65089
[7] Furihata, D.: Finite difference schemes for $\partial u\partial t=(\partial \partial x)\alpha \delta g\delta $u that inherit energy conservation or dissipation property. J. comput. Phys. 156, 181-205 (1999) · Zbl 0945.65103
[8] Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. comput. Appl. math. 134, 37-57 (2001) · Zbl 0989.65099
[9] Ge, Z.; Marsden, J. E.: Lie -- Poisson Hamilton -- Jacobi theory and Lie -- Poisson integrators. Phys. lett. A 133, 134-139 (1998)
[10] Leimkuhler, B.; Reigh, S.: Simulating Hamiltonian dynamics. (2004) · Zbl 1069.65139
[11] Li, S.; Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein -- Gordon equation. SIAM J. Numer. anal. 32, 1839-1875 (1995) · Zbl 0847.65062
[12] Manoranjan, V. S.; Mitchell, A. R.; Morris, J. Li.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. statist. Comput. 5, 946-957 (1984) · Zbl 0555.65080
[13] Manoranjan, V. S.; Ortega, T.; Sanz-Serna, J. M.: Soliton and antisoliton interactions in the ”good” Boussinesq equation. J. math. Phys. 29, 1964-1968 (1988) · Zbl 0673.35089
[14] T. Matsuo, Discrete variational method and its various extensions, Ph.D. Thesis, Department of Engineering, University of Tokyo, 2003.
[15] Matsuo, T.: High-order schemes for conservative or dissipative systems. J. comput. Appl. math. 152, 305-317 (2003) · Zbl 1019.65042
[16] T. Matsuo, Arbitrary high-order conservative or dissipative method for ordinary differential equations and its block algorithm, METR05-19,\langle  http://www.keisu.t.u-tokyo.ac.jp/Research/techrep.0.html\rangle .
[17] Matsuo, T.; Furihata, D.: Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations. J. comput. Phys. 171, 425-447 (2001) · Zbl 0993.65098
[18] Matsuo, T.; Sugihara, M.; Furihata, D.; Mori, M.: Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method. Japan J. Indust. appl. Math. 20, 311-330 (2003) · Zbl 1014.65083
[19] Mckean, H. P.: Boussinesq’s equation as a Hamiltonian system. Adv. math. Suppl. stud. 3, 217-226 (1978) · Zbl 0546.58022
[20] Strauss, W.; Vazquez, L.: Numerical solution of a nonlinear Klein -- Gordon equation. J. comput. Phys. 28, 271-278 (1978) · Zbl 0387.65076
[21] Zakharov, V. E.: On stochastization of one-dimensional chains of nonlinear oscillators. Sov. phys.-JETP 38, 108-110 (1974)
[22] El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the ”good” Boussinesq equation. Appl. numer. Math. 45, 161-173 (2003) · Zbl 1061.76042