zbMATH — the first resource for mathematics

On Lagrange multipliers in flexible multibody dynamics. (English) Zbl 1120.74517
Summary: The Lagrange multiplier technique plays a key role for the treatment of constraints in multibody systems. In contrast to the well-understood rigid body case, the formulation of constraints for elastic bodies requires special care. This paper provides an introduction to the underlying mathematical theory and shows which models are well-defined and which are questionable. Additionally, estimates on the influence of perturbations are given. A simulation example illustrates the results.

74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74K99 Thin bodies, structures
PDF BibTeX Cite
Full Text: DOI
[1] Arnold, M., A perturbation analysis for the dynamical simulation of mechanical multibody systems, Appl. Numer. Math., 18, 37-56, (1995) · Zbl 0833.70002
[2] Bauchau, O. A.; Bottasso, C. L.; Trainelli, L., Robust integration schemes for flexible multibody systems, Comput. Methods Appl. Mech. Engrg., 192, 395-420, (2003) · Zbl 1083.74538
[3] Braess, D., Finite elements: theory, fast solvers and applications in solid mechanics, (1997), Cambridge University Press Cambridge · Zbl 0894.65054
[4] Brenan, K. E.; Campbell, S. L.; Petzold, L. R., The numerical solution of initial value problems in ordinary differential-algebraic equations, (1996), SIAM Philadelphia · Zbl 0844.65058
[5] Duvaut, B.; Lions, J., Inequalities in mechanics and physics, (1976), Springer New York · Zbl 0331.35002
[6] Eberhard, P., Kontaktuntersuchungen durch hybride mehrkörpersystem/finite element simulationen, (2000), Shaker Aachen
[7] Eich-Soellner, E.; Führer, C., Numerical methods in multibody dynamics, (1998), Teubner Stuttgart · Zbl 0899.70001
[8] Farhat, C.; Roux, F., A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Engrg., 32, 1205-1227, (1991) · Zbl 0758.65075
[9] Géradin, M., Computational aspects of the finite element approach to flexible multibody systems, (Schiehlen, W., Advanced Multibody System Dynamics, (1993), Kluwer Academic Publishers Stuttgart), 337-354 · Zbl 0800.93136
[10] J. Gerstmayr, The absolute nodal coordinate formulation with elasto-plastic deformations. In: Proceedings of ECCOMAS Thematic Conference on Advances in Multibody Dynamics 2003 Conference, 2003, pp. 1-19.
[11] Golub, G.; van Loan, C., Matrix computations, (1989), John Hopkins Baltimore · Zbl 0733.65016
[12] Hairer, E.; Wanner, G., Solving ordinary differential equations II, (1996), Springer Berlin, Heidelberg · Zbl 0859.65067
[13] Higueras, I., Numerical methods for stiff index 3 daes, MCMDS, 7, 2, 239-262, (2001) · Zbl 1054.34004
[14] Hughes, T. J., The finite element method, (1987), Prentice Hall Englewood Cliffs
[15] Jahnke, M.; Popp, K.; Dirr, B., Approximate analysis of flexible parts in multibody systems using the finite element method, (Schiehlen, W., Advanced Multibody System Dynamics, (1993), Kluwer Academic Publishers Stuttgart), 237-256 · Zbl 0798.73033
[16] Kikuchi, N.; Oden, J., Contact problems in elasticity, (1988), SIAM Philadelphia · Zbl 0685.73002
[17] Lubich, Ch.; Nowak, U.; Pöhle, U.; Engstler, Ch., MEXX—numerical software for the integration of constrained mechanical multibody systems, Mech. Struct. Mach., 23, 473-495, (1995)
[18] Marsden, J.; Hughes, T. J., Mathematical foundations of elasticity, (1983), Prentice Hall Englewood Cliffs · Zbl 0545.73031
[19] Pereia, M.; Ambrosio, J., Computer aided analysis of rigid and flexible mechanical systems, (1994), Kluwer Academic Publishers Dordrecht
[20] Rheinboldt, W. C.; Simeon, B., On computing smooth solutions of DAE’s for elastic multibody systems, Comput. Math. Appl., 37, 69-83, (1999) · Zbl 0954.74027
[21] Schwertassek, R.; Wallrapp, O., Dynamik flexibler mehrkörpersysteme, (1998), Vieweg
[22] Shabana, A., Dynamics of multibody systems, (1998), Cambridge University Press Cambridge · Zbl 0932.70002
[23] Simeon, B., MBSPACK—numerical integration software for constrained mechanical motion, Surv. Math. Ind., 5, 169-202, (1995) · Zbl 0841.70001
[24] B. Simeon, Numerische Simulation gekoppelter Systeme von partiellen und differential-algebraischen Gleichungen in der Mehrkörperdynamik, Reihe 20, Nr. 325, VDI-Verlag, Düsseldorf, 2000.
[25] Simeon, B., Numerical analysis of flexible multibody systems, Multibody Syst. Dyn., 6, 4, 305-325, (2001) · Zbl 1060.70015
[26] Wriggers, P., Computational contact mechanics, (2002), Wiley
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.