×

zbMATH — the first resource for mathematics

Stabilized finite element methods for the generalized Oseen problem. (English) Zbl 1120.76322
Summary: The numerical solution of the non-stationary, incompressible Navier-Stokes model can be split into linearized auxiliary problems of Oseen type. We present in a unique way different stabilization techniques of finite element schemes on isotropic meshes. First we describe the state-of-the-art for the classical residual-based SUPG/PSPG method. Then we discuss recent symmetric stabilization techniques which avoid some drawbacks of the classical method. These methods are closely related to the concept of variational multiscale methods which seems to provide a new approach to large eddy simulation. Finally, we give a critical comparison of these methods.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Becker, R.; Braack, M., A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38, 4, 173-199, (2001) · Zbl 1008.76036
[2] Becker, R.; Braack, M.; Vexler, B., Parameter identification for chemical models in combustion problems, Appl. numer. math., 54, 3-4, 519-536, (2005) · Zbl 1066.80006
[3] Braack, M.; Burman, E., Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. numer. anal., 43, 6, 2544-2566, (2006) · Zbl 1109.35086
[4] F. Brezzi, B. Cockburn, L.D. Marini and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods, Oxford Univ. Comput. Lab., Report no. NA-04/24. · Zbl 1125.65102
[5] Brooks, A.N.; Hughes, T.J.R., Streamline upwind petrov – galerkin formulation for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[6] Burman, E.; Ern, A., Stabilized Galerkin methods for convection – reaction – diffusion equations: discrete maximum principle and convergence, Math. comp., 74, 252, 1637-1652, (2005) · Zbl 1078.65088
[7] Burman, E., A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. numer. anal., 43, 5, 2012-2033, (2005) · Zbl 1111.65102
[8] Burman, E.; Hansbo, P., Edge stabilization for Galerkin approximations of convection – diffusion problems, Comput. methods appl. mech. engrg., 193, 1437-1453, (2004) · Zbl 1085.76033
[9] Burman, E.; Hansbo, P., A stabilized non-conforming finite element method for incompressible flow, Comput. methods appl. mech. engrg., 195, 23/24, 2881-2899, (2006) · Zbl 1115.76042
[10] Burman, E.; Hansbo, P., Edge stabilization for the generalized Stokes problem: a continuous interior penalty method, Comput. methods appl. mech. engrg., 195, 2393-2410, (2006) · Zbl 1125.76038
[11] E. Burman, A. Ern, Continuous interior penalty hp-finite element methods for transport operators, Math. Comp. (to appear). · Zbl 1119.65406
[12] Burman, E.; Fernández, M.A.; Hansbo, P., Continuous interior penalty method for the oseen’s equations, SIAM J. numer. anal., 44, 3, 1248-1274, (2006) · Zbl 1344.76049
[13] E. Burman, M. Fernández, Stabilized finite element schemes for incompressible flow using velocity/pressure spaces satisfying the LBB-condition, in: Proceedings of the 6th World Congress in Computational Mechanics, WCCM VI, 2004.
[14] Cockburn, B.; Kanschat, G.; Schötzau, D., The local discontinuous Galerkin method for the Oseen equations, Math. comp., 73, 569-583, (2004) · Zbl 1066.76036
[15] Codina, R.; Blasco, J., A finite element formulation of the Stokes problem allowing equal velocity – pressure interpolation, Comput. methods appl. mech. engrg., 143, 373-391, (1997) · Zbl 0893.76040
[16] Codina, R., Stabilization of incompressibility and convection through orthogonal subscales in finite element methods, Comput. methods appl. mech. engrg., 190, 13/14, 1579-1599, (2000) · Zbl 0998.76047
[17] Douglas, J.; Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, (), 207-216
[18] Franca, L.P.; Frey, S.L., Stabilized finite element methods: II. the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 99, 209-233, (1992) · Zbl 0765.76048
[19] Franca, L.P.; Stenberg, R., Error analysis of some Galerkin-least-squares methods for the elasticity equations, SIAM J. numer. anal., 28, 1680-1697, (1991) · Zbl 0759.73055
[20] Gelhard, T.; Lube, G.; Olshanskii, M.O.; Starcke, J.H., Stabilized finite element schemes with LBB-stable elements for incompressible flows, J. comp. appl. math., 177, 243-267, (2005) · Zbl 1063.76054
[21] Girault, V.; Riviere, B.; Wheeler, M.F., A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and navier – stokes problems, Math. comp., 74, 249, (2004), 53-84
[22] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2an, 33, 1293-1316, (1999) · Zbl 0946.65112
[23] Hansbo, P.; Szepessy, A., A velocity – pressure streamline diffusion finite element method for the incompressible navier – stokes equations, Comput. meths. appl. mech. eng., 84, 175-192, (1990) · Zbl 0716.76048
[24] Houston, P.; Süli, E., Stabilised hp-finite element approximations of partial differential equations with nonnegative characteristic form, Computing, 66, 99-119, (2001) · Zbl 0985.65136
[25] Hughes, T.J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[26] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska – brezzi condition: a stable petrov – galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[27] Hughes, T.J.; Mazzei, L.; Jansen, K.E., Large eddy simulation and the variational multiscale method, Comput. visual. sci., 3, 47-59, (2000) · Zbl 0998.76040
[28] V. John, S. Kaya, Finite element error analysis of a variational multiscale method for the Navier-Stokes equations. Adv. Comp. Math. (in press). · Zbl 1126.76030
[29] John, V.; Kaya, S., A finite element variational multiscale method for the navier – stokes equations, SIAM J. sci. comp., 26, 1485-1503, (2005) · Zbl 1073.76054
[30] John, V.; Kaya, S.; Layton, W., A two-level variational multiscale method for convection-dominated convection – diffusion equations, Comput. methods appl. mech. engrg., 195, 4594-4603, (2006) · Zbl 1124.76028
[31] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and navier – stokes equations, Math. comp., 47, 175, (1986), 1-18
[32] S. Kaya, W.J. Layton, Subgrid-scale eddy viscosity models are variational multiscale methods, Technical Report TR-MATH 03-05, University of Pittsburgh, 2003.
[33] Kaya, S.; Riviere, B., A discontinuous subgrid eddy viscosity method for the time dependent navier – stokes equations, SIAM J. numer. anal., 43, 4, (2005), 157-159
[34] Layton, W.J., A connection between subgrid scale eddy viscosity and mixed methods, Appl. math. comput., 133, 147-157, (2002) · Zbl 1024.76026
[35] D. Loghin, Analysis of preconditioned Picard iterations for the Navier-Stokes equations, Report no. 01/10, Oxford University Computing Laboratory, 2001.
[36] Lube, G.; Rapin, G., Residual-based higher-order FEM for a generalized Oseen problem, Math. model. meth. appl. sci., 16, 7, 949-966, (2006) · Zbl 1095.76032
[37] Nitsche, J., Über ein variationsprinzip zur Lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abh. math. sem. univ. Hamburg, 36, 9-15, (1971) · Zbl 0229.65079
[38] N. Parolini, E. Burman. Subgrid edge stabilization for transport equations, EPFL/IACS Preprint 09.2005.
[39] Smagorinsky, J.S., General circulation experiments with the primitive equations, Mon. weather rev., 91, 99-164, (1963)
[40] Tobiska, L.; Lube, G., A modified streamline diffusion method for solving the stationary navier – stokes equations, Numer. math., 59, 13-29, (1991) · Zbl 0696.76034
[41] Tobiska, L.; Verfürth, R., Analysis of a streamline-diffusion finite element method for the Stokes and navier – stokes equations, SIAM numer. anal., 33, 107-127, (1996) · Zbl 0843.76052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.