zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy inventory model for deteriorating items with permissible delay in payment. (English) Zbl 1120.90301
Summary: We extend the model of {\it A. M. M. Jamal, B. R. Sarker} and {\it S. Wang} [J. Oper. Res. Soc. 48, No. 8, 826--833 (1997; Zbl 0890.90049)] by fuzzifying the carrying cost rate, interest paid rate and interest earned rate simultaneously, based on the interval-valued fuzzy numbers and triangular fuzzy number to fit the real world. We then prove that the estimate of total variable cost per unit time in the fuzzy sense is a strictly pseudo-convex function. As a result, there exists a unique optimal solution to our proposed model. Moreover, we apply the Jamal et al. example to show the results and to compare with the Jamal et al. model.

MSC:
90B05Inventory, storage, reservoirs
03E72Fuzzy set theory
WorldCat.org
Full Text: DOI
References:
[1] Aggarwal, S. P.; Jaggi, C. K.: Ordering policies of deteriorating items under permissible delay in payments. Journal of the operational research society 46, 658-662 (1995) · Zbl 0830.90032
[2] Bazarra, M.; Sherali, H.; Shetty, C. M.: Nonlinear programming. (1993)
[3] Chang, H. C.: An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers & operations research 31, 2079-2092 (2004) · Zbl 1100.90500
[4] Chang, H. C.; Yao, J. S.; Ouyang, L. Y.: Fuzzy mixture inventory model with variable lead-time based on probabilistic fuzzy set and triangular fuzzy number. Mathematical and computer modelling 39, 287-304 (2004) · Zbl 1055.90008
[5] Chang, S.: Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number. Fuzzy sets and systems 107, 37-57 (1999) · Zbl 0947.90003
[6] Das, K.; Roy, T. K.; Maiti, M.: Multi-item stochastic and fuzzy-stochastic inventory models under two restrictions. Computers & operations research 31, 1793-1806 (2004) · Zbl 1073.90006
[7] Gorzalczany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy set. Fuzzy sets and systems 21, 1-17 (1987)
[8] Ishii, H.; Konno, T.: A stochastic inventory problem with fuzzy shortage cost. European journal operational research 106, 90-94 (1998)
[9] Jamal, A. M. M.; Sarker, B. R.; Wang, S.: An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of operations research society 48, 826-833 (1997) · Zbl 0890.90049
[10] Katagiri, H.; Ishii, H.: Some inventory problems with fuzzy shortage cost. Fuzzy sets and systems 111, 87-97 (2000) · Zbl 0949.90002
[11] Kaufmann, A.; Gupta, M. M.: Introduction to fuzzy arithmetic: theory and applications. (1991) · Zbl 0754.26012
[12] Ouyang, L. Y.; Chang, H. C.: The variable lead time stochastic inventory model with a fuzzy backorder rate. Journal of operations research society of Japan 44, 1 (2001) · Zbl 1138.90325
[13] Ouyang, L. Y.; Wu, K. S.: A minimax distribution free procedure for mixed inventory model with variable lead time. International journal of production economics 56 -- 57, 511-516 (1998)
[14] Ouyang, L. Y.; Yao, J. S.: A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand. Computers & operations research 29, 471-487 (2002) · Zbl 0995.90004
[15] Petrović, D.; Petrović, R.; Vujošević, M.: Fuzzy models for the newsboy problem. International journal of production economics 45, 435-441 (1996)
[16] Pu, P. M.; Liu, Y. M.: Fuzzy topology 1. Neighborhood structure of a fuzzy point and Moore -- Smith convergence. Journal of mathematical analysis and applications 76, 571-599 (1980) · Zbl 0447.54006
[17] Vujošević, M.; Petrović, D.; Petrović, R.: EOQ formula when inventory cost is fuzzy. International journal of production economics 45, 499-504 (1996)
[18] Yao, J. S.; Chang, S. C.; Su, J. S.: Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity. Computers & operations research 27, 935-962 (2000) · Zbl 0970.90010
[19] Yao, J. S.; Lee, H. M.: Fuzzy inventory with backorder for fuzzy order quantity. Information sciences 93, 283-319 (1996) · Zbl 0884.90077
[20] Yao, J. S.; Su, J. S.: Fuzzy inventory with backorder for fuzzy total demand based on interval-valued fuzzy set. European journal of operational research 124, 390-408 (2000) · Zbl 0978.90009
[21] Yao, J. S.; Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy sets and systems 116, 275-288 (2000) · Zbl 1179.62031