zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A representation of DNA primary sequences by random walk. (English) Zbl 1120.92018
Summary: We describe the DNA primary sequences by random walks. With this description, two random sequences $\{Y_m\}$ and $\{X_n\}$ corresponding to a DNA sequence, as well as graphical representations of DNA sequences are given. We further prove that two random sequences $\{Y_m\}$ and $\{X_n\}$ are both Markov chains. Based on transition probability distributions of Markov chains and some numerical characterizations of random sequences, we introduce some new invariants for DNA primary sequences. Then using these invariants, we make comparisons among primary sequences for exon 1 of $\beta$-globin genes belonging to nine species for the analysis of similarity and dissimilarity.

MSC:
92C40Biochemistry, molecular biology
60G50Sums of independent random variables; random walks
92D10Genetics
WorldCat.org
Full Text: DOI
References:
[1] Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.: Long-range correlations in nucleotide sequences. Nature 356, 168 (1992)
[2] Dodin, G.; Pierre, V.; Levoiretal, P.: Fourier and wavelet transform analysis a tool for visualizing regular patterns in DNA sequences. J. theor. Biol. 206, 323 (2000)
[3] Tsonis, A. A.; Kumar, P.; Elsneretal, J. B.: Navelet analysis of DNA sequences. Phys. rev. E 53, 1828 (1996)
[4] Luo, L. F.; Tsai, L.; Zhou, Y. M.: Information parameters of nucleic acid and molecular evolution. J. theor. Biol. 130, 351 (1988)
[5] Luo, L. F.; Tsai, L.: Fractal dimension of nucleic acid and its relation to evolutionary level. Chem. phys. Lett. 5, 421 (1988)
[6] Arneodo, A.; D’aubenton-Carafa, Y.; Bacry, E.: Wavelet based fractal analysis of DNA sequences. Physica D 96, 291 (1996)
[7] Arneodo, A.; D’aubenton-Carafa, Y.; Bacry, E.: Nucleotide composition effects on the long-range correlations in human genes. Eur. phys. J. B 1, 259 (1998)
[8] Voss, R.: Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys. rev. Lett. 68, 3805 (1992)
[9] Hamori, E.; Ruskin, J.: H curves, a novel method of representation of uncleotide series especially suited for long DNA sequence. J. biol. Chem. 258, 1318 (1983)
[10] Zhang, R.; Zhang, C. T.: Z-curve, an intuitive tool for visualizing and analyzing the DNA sequences. J. biomol. Str. dyn. 11, 767 (1994)
[11] Gates, M. A.: Simple DNA sequence representations. Nature 316, 219 (1985)
[12] Leong, M.; Morgenthalar, S.: Random walk and gap plots of DNA sequences. Comput. appl. Biosci. 21, 503 (1995)
[13] Nandy, A.: Graphical representation of long DNA sequence. Curr. sci. 66, 821 (1994)
[14] Nandy, A.: Two-dimensional graphical representation of DNA sequences and intron -- exon discrimination in intron-rich sequences. Comput. appl. Biosci. 12, 55 (1996)
[15] Nandy, A.: Graphical representation of DNA sequence. Curr. sci. 40, 915 (2000)
[16] Nandy, A.; Nandy, P.: On the uniqueness of quantitative DNA difference descriptors in 2D graphical representation models. Chem. phys. Lett. 368, 102 (2003)
[17] Nandy, A.: A new graphical representation and analysis of DNA sequence structure: I. Methodology and application to globin genes. Curr. sci. 66, 309 (2004)
[18] Randic, M.; Vracko, M.; Nandy, A.; Basak, S. C.: On 3-D graphical representation of DNA primary sequence and their numerical characterization. J. inf. Comput. 40, 1235 (2000)
[19] Randic, M.; Balaban, A. T.: On a four-dimensional representation of DNA primary sequences. J. chem. Inf. comput. Sci. 43, 532 (2003)
[20] He, P. A.; Wang, J.: Numerical characterization of DNA primary sequence. Internet elec. J. mol. Des. 1, 668 (2002)
[21] Randic, M.; Vracko, M.; Lers, N.; Plavsic, D.: Novel 2-D graphical representation of DNA sequences and their numerical characterization. Chem. phys. Lett. 368, 1 (2003)
[22] Randic, M.; Vracko, M.; Lers, N.; Plavsic, D.: Analysis of similarity/dissimilarity of DNA sequences based on novel 2-D graphical representation. Chem. phys. Lett. 371, 202 (2003)
[23] Yuan, C. X.; Liao, B.; Wang, T. M.: New 3D graphical representation of DNA sequence and their numerical characterization. Chem. phys. Lett. 397, 412 (2003)
[24] Liao, B.; Wang, T. M.: Analysis of similarity of DNA sequences based on triplets. J. chem. Inf. comput. Sci. 44, 1666 (2004)
[25] Liao, B.; Wang, T. M.: Analysis of similarity/dissimilarity of DNA sequences based on 3-D graphical representation. Chem. phys. Lett. 388, 195 (2004)