A generalized eigenvalue problem in the max algebra. (English) Zbl 1121.15011

Let \(A\) and \(B\) be two (entrywise) nonnegative \({n}\times{n}\) matrices; and define the “max” product \(\otimes\) by \((A\otimes{x})_{i}=Max^{n}_{1}a_{im}{x_{m}}\). The generalized eigenvalue problem consists of the problem of the existence and uniqueness of an eigenvalue \(\lambda\) such that \(A\otimes{x}=\lambda{B}\otimes{x}\), \(x\geq{0}\), \({x}\neq{0}\). In this paper, the authors use the results for the case \(A\otimes{x}=\lambda{x}\), \(x\geq{0}\), \({x}\neq{0}\), (when \(B=I\)), to consider the generalized eigenvalue problem: \(A\otimes{x}=\lambda{B}\otimes{x}\), \(x\geq{0}\), \({x}\neq{0}\), where \(A\) and \(B\) are positive \({n}\times{n}\) matrices. The authors explore the possible number of eigenvalues and corresponding eigenvectors when \(A\) and \(B\) are \({2}\times{2}\). They use degree theory and certain geometric properties of the graphs of the some specific functions corresponding to algebraic conditions on certain \({2}\times{2}\) determinants.


15A18 Eigenvalues, singular values, and eigenvectors
15B48 Positive matrices and their generalizations; cones of matrices
15B33 Matrices over special rings (quaternions, finite fields, etc.)
Full Text: DOI


[1] Bapat, R.B., A MAX version of the perron – frobenius theorem, Linear algebra appl., 275/276, 3-18, (1998) · Zbl 0941.15020
[2] Burkard, R.E.; Butkovic, P., MAX algebra and the linear assignment problem, Math. program., 98, 415-429, (2003) · Zbl 1160.90630
[3] Baccelli, F.; Cohen, G.; Olsder, G.; Quadrat, J.-P., Synchronization and linearity. an algebra for discrete event systems, (1992), Wiley · Zbl 0824.93003
[4] Bapat, R.B.; Olesky, D.D.; van den Driessche, P., Perron – frobenuius theory for a generalized eigenproblem, Linear and multilinear algebra, 40, 141-152, (1995) · Zbl 0856.15011
[5] Brouwer, L.E.J., Über abbildung von mannigfaltigkeiten, Math. ann., 71, 97-115, (1912) · JFM 42.0417.01
[6] Cuninghame-Green, R., Minimax algebra, () · Zbl 0399.90052
[7] Gladwell, G., Inverse problems in vibration, (2004), Kluwer Academic Publishers Dordrecht · Zbl 0646.73013
[8] Horn, R.A.; Johnson, C.R., Topics in matrix analysis, (1991), Cambridge University Press Cambridge · Zbl 0729.15001
[9] Lloyd, N.G., Degree theory, (1978), Cambridge University Press Cambridge · Zbl 0367.47001
[10] Parlett, B.N., The symmetric eigenvalue problem, (1998), SIAM Publications Philadelphia · Zbl 0885.65039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.