Gasper, George; Rahman, Mizan Some systems of multivariable orthogonal \(q\)-Racah polynomials. (English) Zbl 1121.33019 Ramanujan J. 13, No. 1-3, 389-405 (2007). The authors employ certain \(q\)-identities and \(q\)-summation formulae, for example, summation formula for terminating \({_6\phi_5}\) to derive basic analogs of extended Racah polynomials and second system of Racah’s multivariate orthogonal polynomials as considered by M. V. Tratnik [J. Math. Phys. 32, No. 9, 2337–2342 (1991; Zbl 0742.33007)]. Special and limit cases of their results provide interesting known results. Reviewer: Ajendra Nath Srivastava (Puna) Cited in 42 Documents MSC: 33D50 Orthogonal polynomials and functions in several variables expressible in terms of basic hypergeometric functions in one variable 33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) 33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\) Keywords:Multivariable discrete orthogonal polynomials; Multivariable basic hypergeometric orthogonal polynomials; Several variables Citations:Zbl 0742.33007 PDF BibTeX XML Cite \textit{G. Gasper} and \textit{M. Rahman}, Ramanujan J. 13, No. 1--3, 389--405 (2007; Zbl 1121.33019) Full Text: DOI arXiv OpenURL References: [1] Askey, R., Wilson, J.A.: A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols. SIAM J. Math. Anal. 10, 1008–1016 (1979) · Zbl 0437.33014 [2] Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs Amer. Math. Soc. 319, (1985) · Zbl 0572.33012 [3] van Diejen, J.F., Stokman, J.V.: Multivariable q-Racah polynomials. Duke Math. J. 91, 89–136 (1998) · Zbl 0951.33010 [4] Dunkl, C.F.: Orthogonal polynomials in two variables of q-Hahn and q-Jacobi type. SIAM J. Alg. Disc. Meth. 1, 137–151 (1980) · Zbl 0499.33007 [5] Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge Univ. Press (2001) · Zbl 0964.33001 [6] Gasper, G.: Positivity and special functions. In: Askey, R. (ed.) Theory and Applications of Special Functions, pp. 375–433. Academic Press, New York (1975) · Zbl 0326.33009 [7] Gasper, G., Rahman, M.: Nonnegative kernels in product formulas for q-Racah polynomials. J. Math. Anal. Appl. 95, 304–318 (1983) · Zbl 0518.33006 [8] Gasper, G., Rahman, M.: Product formulas of Watson, Bailey and Bateman types and positivity of the Poisson kernel for q-Racah polynomials. SIAM J. Math. Anal. 15, 768–789 (1984) · Zbl 0545.33013 [9] Gasper, G., Rahman, M.: Basic Hypergeometric Series. 2nd ed. Cambridge Univ. Press (2004) · Zbl 1129.33005 [10] Gasper, G., Rahman, M.: q-Analogues of some multivariable biorthogonal polynomials. In: Ismail, M.E.H., Koelink, E. (eds.) Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman. Dev. Math. vol. 13, pp. 185–208 (2005) · Zbl 1219.33023 [11] Gasper, G., Rahman, M.: Some systems of multivariable orthogonal Askey–Wilson polynomials. In: Ismail, M.E.H., Koelink, E. (eds.) Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman. Dev. Math. vol. 13, pp. 209–219 (2005) · Zbl 1219.33027 [12] Granovskii, Ya.I., Zhedanov, A.S.: ’Twisted’ Clebsch-Gordan coefficients for SU q (2). J. Phys. A 25, L1029–L1032 (1992) [13] Gustafson, R.A.: A Whipple’s transformation for hypergeometric series in U(n) and multivariable hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 18, 495–530 (1987) · Zbl 0607.33015 [14] Karlin, S., McGregor, J.: Linear growth models with many types and multidimensional Hahn polynomials. In: Askey, R. (ed.) Theory and Applications of Special Functions, pp. 261–288. Academic Press, New York (1975) · Zbl 0361.60071 [15] Koekoek, R., Swarttouw, R.F.: The Askey–scheme of hypergeometric orthogonal polynomials and its q-analogue. Report 98–17, Delft Univ. of Technology, o http://aw.twi.tudelft.nl/\(\sim\)koekoek/research.html (1998) [16] Koelink, H.T., Van der Jeugt, J.: Convolutions for orthogonal polynomials from Lie and quantum algebra representations. SIAM J. Math. Anal. 29, 794–822 (1998) · Zbl 0977.33013 [17] Koornwinder, T.H.: Askey–Wilson polynomials for root systems of type BC. Contemp. Math. 138, 189–204 (1998) · Zbl 0797.33014 [18] Rosengren, H.: Multivariable q-Hahn polynomials as coupling coefficients for quantum algebra representations. Int. J. Math. Math. Sci. 28, 331–358 (2001) · Zbl 1049.33014 [19] Spiridonov, V.P.: Theta hypergeometric integrals. Algebra i Analiz (St. Petersburg Math. J.) 15, 161–215 (2003) [20] Stokman, J.V.: On BC type basic hypergeometric orthogonal polynomials. Trans. Amer. Math. Soc. 352, 1527–1579 (2000) · Zbl 0936.33008 [21] Tratnik, M.V.: Multivariable Wilson polynomials. J. Math. Phys. 30, 2001–2011 (1989) · Zbl 0687.33014 [22] Tratnik, M.V.: Multivariable biorthogonal continuous–discrete Wilson and Racah polynomials. J. Math. Phys. 31, 1559–1575 (1990) · Zbl 0707.33007 [23] Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau–continuous families. J. Math. Phys. 32, 2065–2073 (1991) · Zbl 0746.33007 [24] Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau–discrete families. J. Math. Phys. 32, 2337–2342 (1991) · Zbl 0742.33007 [25] Wilson, J.A.: Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11, 690–701 (1980) · Zbl 0454.33007 [26] Xu, Y.: On discrete orthogonal polynomials of several variables. Adv. in Appl. Math. 33, 615–632 (2004) · Zbl 1069.33011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.