Cavaliere, Paola; Transirico, Maria The Dirichlet problem for elliptic equations in the plane. (English) Zbl 1121.35040 Commentat. Math. Univ. Carol. 46, No. 4, 751-758 (2005). Let \(\Omega \) be a bounded open subset of \(R^2\) with boundary of class \(C^{1,1}\), and let \(p\in [1,\infty ]\). Consider in \(\Omega \) the differential operator \(L=-\sum a_{ij}\partial _i \partial _j +\sum a_i \partial _i +a\) and suppose that the coefficients of \(L\) satisfy the following hypotheses: \(a_{ij}=a_{ji} \in L^\infty (\Omega )\cap VMO (\Omega )\); \(\sum a_{ij}\psi _i \psi _j \geq \nu | \psi | ^2\), \(\nu >0\); \(a_i \in L^r(\Omega )\), \(r>2\), \(r\geq p\); \(a\in L^p(\Omega )\), \(a\geq 0\). The unique solvability of the Dirichlet problem \(u\in W^{2,p}(\Omega )\cap W^{1,p}_0(\Omega )\), \(Lu=f \in L^p(\Omega )\) is proved. Reviewer: Dagmar Medková (Praha) Cited in 2 Documents MSC: 35J25 Boundary value problems for second-order elliptic equations 35R05 PDEs with low regular coefficients and/or low regular data Keywords:elliptic equation; Dirichlet problem; VMO-coeficients PDF BibTeX XML Cite \textit{P. Cavaliere} and \textit{M. Transirico}, Commentat. Math. Univ. Carol. 46, No. 4, 751--758 (2005; Zbl 1121.35040) Full Text: EuDML EMIS OpenURL