×

zbMATH — the first resource for mathematics

Functional large deviations for Burgers particle systems. (English) Zbl 1121.35146
A Burgers particle system, i.e. a one-dimensional system of sticky particles with discrete white-noise-type initial data (not necessary Gaussian) is considered. The paper describes functional large deviations for the state of the system at any given time.

MSC:
35R60 PDEs with randomness, stochastic partial differential equations
35Q53 KdV equations (Korteweg-de Vries equations)
82C22 Interacting particle systems in time-dependent statistical mechanics
76F20 Dynamical systems approach to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Avellaneda, Comm Math Phys 169 pp 45– (1995)
[2] Avellaneda, Comm Math Phys 172 pp 13– (1995)
[3] Bertoin, J Math Pures Appl (9) 79 pp 173– (2000)
[4] Some properties of Burgers turbulence with white or stable noise initial data. Lévy processes, 267–279. Birkhäuser-Boston, Boston, 2001. · Zbl 0984.60078 · doi:10.1007/978-1-4612-0197-7_12
[5] Borovkov, Teor Veroyatn i Primen 12 pp 635– (1967)
[6] Theor Probab Appl 12 pp 575– (1967)
[7] Borovkov, Uspekhi Mat Nauk 38 pp 227– (1983)
[8] Russian Math Surveys 38 pp 259– (1983)
[9] Exponential tightness and projective systems in large deviation theory. Festschrift for Lucien Le Cam, 143–156. Springer, New York, 1997. · doi:10.1007/978-1-4612-1880-7_9
[10] ; Large deviations techniques and applications. 2nd ed. Springer, New York, 1998. · Zbl 0896.60013 · doi:10.1007/978-1-4612-5320-4
[11] E, Comm Math Phys 177 pp 349– (1996)
[12] Frachebourg, J Fluid Mech 417 pp 323– (2000)
[13] Lifshits, Ann Probab 33 pp 53– (2005)
[14] Martin, J Statist Phys 84 pp 837– (1996)
[15] Mogulskii, Teor Verojatnost i Primenen 21 pp 309– (1976)
[16] Theor Probab Appl 21 pp 300– (1976)
[17] Ryan, Comm Pure Appl Math 51 pp 47– (1998)
[18] Shandarin, Rev Modern Phys 61 pp 185– (1989)
[19] Vergassola, Astron Astrophys 289 pp 325– (1994)
[20] Zeldovich, Astron Astrophys 5 pp 84– (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.