zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Center manifold and stability in critical cases for some partial functional differential equations. (English) Zbl 1121.37063
Summary: We prove the existence of a center manifold for some partial functional differential equations, whose linear part is not necessarily densely defined but satisfies the Hille-Yosida condition. The attractiveness of the center manifold is also shown when the unstable space is reduced to zero. We prove that the flow on the center manifold is completely determined by an ordinary differential equation in a finite-dimensional space. In some critical cases, when the exponential stability is not possible, we prove that the uniform asymptotic stability of the equilibrium is completely determined by the uniform asymptotic stability of the reduced system on the center manifold.

37L10Normal forms, center manifold theory, bifurcation theory
34K30Functional-differential equations in abstract spaces
34G20Nonlinear ODE in abstract spaces
35R10Partial functional-differential equations
37K20Relations of infinite-dimensional systems with algebraic geometry, etc.
47D06One-parameter semigroups and linear evolution equations