×

A geometry on the space of probabilities. I: The finite dimensional case. (English) Zbl 1121.46043

Summary: We provide a natural way of defining exponential coordinates on the class of probabilities on the set \(\Omega = [1,n]\) or on \(\mathbb{P} = \{p=(p_1,\dots,p_n)\in \mathbb{R}^n \mid p_i > 0;\;\Sigma_{i=1}^n p_i =1\}\). For that, we have to regard \(\mathbb{P}\) as a projective space and the exponential coordinates will be related to geodesic flows in \(\mathbb{C}^n\).
[Part II has appeared ibid.22, No.3, 833–849 (2006; Zbl 1122.46039).]

MSC:

46L05 General theory of \(C^*\)-algebras
28A33 Spaces of measures, convergence of measures
46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
94A17 Measures of information, entropy

Citations:

Zbl 1122.46039

References:

[1] Barndorff-Nielsen, O.: Information and exponential families in statistical theory. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Chichester, 1978. · Zbl 0387.62011
[2] Borwein, J. and Lewis, A.: Convex Analysis and Nonlinear Optimization . CMS Books in Mathematics 3 . Springer-Verlag, New York, 2000. · Zbl 0953.90001
[3] Corach, G.; Porta, H. and Recht, H.: The geometry of the space of selfadjoint invertible elements in a \(C^*\)-algebra. Integral Equations Operator Theory 16 (1993), no. 3, 335-359. · Zbl 0786.58006 · doi:10.1007/BF01204226
[4] Escher, F.: On the probability function in the collective theory of risk. Scandinavisk Aktuarietidskrift 15 (1932), 175-195. · Zbl 0004.36101
[5] Jaynes, E.: Information Theory and Statistical Physics. Phys. Rev. 106 (1957), 620-630. · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[6] Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry , vol. II. Interscience Tracts in Pure and Applied Mathematics 15 , vol. II. Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1969. · Zbl 0175.48504
[7] Porta, H. and Recht, L.: Conditional expectations and operator decompositions. Ann. Global Anal. Geom. 12 (1994), no. 4, 335-339. · Zbl 0829.58004 · doi:10.1007/BF02108305
[8] Porta, H. and Recht, L.: Exponential sets and their geometric motions. J. Geom. Anal. 6 (1996), no. 2, 277-285. · Zbl 0904.58003 · doi:10.1007/BF02921602
[9] Pistone, G. and Sempi, C.: An infinite dimensional geometric structure on the space of all probability measures equivalent to a given one. Ann. Statist. 23 (1995), no. 5, 1543-1561. · Zbl 0848.62003 · doi:10.1214/aos/1176324311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.