Chen, Xia Large deviations and laws of the iterated logarithm for the local times of additive stable processes. (English) Zbl 1121.60025 Ann. Probab. 35, No. 2, 602-648 (2007). The main aim of this paper is to present the large deviations and the laws of the iterated logarithm for the local times of the \(d\)-dimensional symmetric and additive stable processes. In particular, the author identifies, as much as he can, the constants appearing in these limit forms. The results presented are applied to the law of the iterated logarithm and the approach is based on Fourier analysis, moment computation and time exponentiation. Reviewer: Zdzisław Rychlik (Lublin) Cited in 8 Documents MSC: 60F10 Large deviations 60F15 Strong limit theorems 60J55 Local time and additive functionals 60G52 Stable stochastic processes Keywords:additive stable process; local time; law of the iterated logarithm; large deviations × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bass, R. F. and Chen, X. (2004). Self-intersection local time: Critical exponent, large deviations, and laws of the iterated logarithm. Ann. Probab. 32 3221–3247. · Zbl 1075.60097 · doi:10.1214/009117904000000504 [2] Bass, R. F., Chen, X. and Rosen, J. (2005). Large deviations for renormalized self-intersection local times of stable processes. Ann. Probab. 33 984–1013. · Zbl 1087.60060 · doi:10.1214/009117904000001099 [3] Bertoin, J. (1996). Lévy Processes. Cambridge Univ. Press. · Zbl 0861.60003 [4] Chen, X. (2004). Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32 3248–3300. · Zbl 1067.60071 · doi:10.1214/009117904000000513 [5] Chen, X. and Li, W. (2003). Small deviation estimates for some additive processes. Progr. Probab. 55 225–238. · Zbl 1052.60040 [6] Chen, X. and Li, W. (2004). Large and moderate deviations for intersection local times. Probab. Theory Related Fields 128 213–254. · Zbl 1038.60074 · doi:10.1007/s00440-003-0298-7 [7] Chen, X., Li, W. and Rosen, J. (2005). Large deviations for local times of stable processes and stable random walks in 1 dimension. Electron. J. Probab. 10 577–608. · Zbl 1109.60016 [8] Chen, X. and Rosen, J. (2005). Exponential asymptotics for intersection local times of stable processes and random walks. Ann. Inst. H. Poincaré Probab. Statist. 41 901–928. · Zbl 1077.60027 · doi:10.1016/j.anihpb.2004.09.006 [9] Dalang, R. C. and Walsh, J. B. (1993). Geography of the level set of the Brownian sheet. Probab. Theory Related Fields 96 153–176. · Zbl 0792.60038 · doi:10.1007/BF01192131 [10] Dalang, R. C. and Walsh, J. B. (1993). The structure of a Brownian bubble. Probab. Theory Related Fields 96 475–501. · Zbl 0794.60047 · doi:10.1007/BF01200206 [11] Darling, D. A. and Kac, M. (1957). On occupation times for Markoff processes. Trans. Amer. Math. Soc. 84 444–458. JSTOR: · Zbl 0078.32005 · doi:10.2307/1992825 [12] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications , 2nd ed. Springer, New York. · Zbl 0896.60013 [13] Donsker, M. D. and Varadhan, S. R. S. (1977). On law of the iterated logarithm for local times. Comm. Pure Appl. Math. 30 707–753. · Zbl 0356.60029 · doi:10.1002/cpa.3160300603 [14] Fitzsimmons, P.-J. and Pitman, J. (1999). Kac’s moment formula and the Feynman–Kac formula for additive functionals of a Markov process. Stochastic Process. Appl. 79 117–134. · Zbl 0962.60067 · doi:10.1016/S0304-4149(98)00081-7 [15] Fitzsimmons, P.-J. and Salisbury, T. S. (1989). Capacity and energy for multiparameter stable processes. Ann. Inst. H. Poincaré Probab. Statist. 25 325–350. · Zbl 0689.60071 [16] Hirsch, F. and Song, S. (1995). Symmetric Skorohod topology on \(n\)-variable functions and hierarchical Markov properties of \(n\)-parameter processes. Probab. Theory Related Fields 103 25–43. · Zbl 0833.60074 · doi:10.1007/BF01199030 [17] Kahane, J.-P. (1968). Some Random Series of Functions. Heath and Raytheon Education Co., Lexington, MA. · Zbl 0192.53801 [18] Kendall, W. S. (1980). Contours of Brownian processes with several-dimensional times. Z. Wahrsch. Verw. Gebiete 52 267–276. · Zbl 0431.60056 · doi:10.1007/BF00538891 [19] Kesten, H. (1965). An iterated logarithm law for local times. Duke Math. J. 32 447–456. · Zbl 0132.12701 · doi:10.1215/S0012-7094-65-03245-X [20] Khoshnevisan, D. (1999). Brownian sheet images and Bessel–Riesz capacity. Trans. Amer. Math. Soc. 351 2607–2622. JSTOR: · Zbl 0930.60055 · doi:10.1090/S0002-9947-99-02408-3 [21] Khoshnevisan, D. and Shi, Z. (1999). Brownian sheet and capacity. Ann. Probab. 27 1135–1159. · Zbl 0962.60066 · doi:10.1214/aop/1022677442 [22] Khoshnevisan, D. and Xiao, Y. (2002). Level sets of additive Lévy processes. Ann. Probab. 30 62–100. · Zbl 1019.60049 · doi:10.1214/aop/1020107761 [23] Khoshnevisan, D., Xiao, Y. and Zhong, Y. (2003). Measuring the range of an additive Lévy process. Ann. Probab. 31 1097–1141. · Zbl 1039.60048 · doi:10.1214/aop/1048516547 [24] Khoshnevisan, D., Xiao, Y. and Zhong, Y. (2003). Local times of additive Lévy processes. Stochastic Process. Appl. 104 193–216. · Zbl 1075.60520 · doi:10.1016/S0304-4149(02)00237-5 [25] König, W. and Mörters, P. (2002). Brownian intersection local times: Upper tail asymptotics and thick points. Ann. Probab. 30 1605–1656. · Zbl 1032.60073 · doi:10.1214/aop/1039548368 [26] Le Gall, J.-F., Rosen, J. and Shieh, N.-R. (1989). Multiple points of Lévy processes. Ann. Probab. 17 503–515. · Zbl 0684.60057 · doi:10.1214/aop/1176991412 [27] Marcus, M. B. and Rosen, J. (1994). Laws of the iterated logarithm for the local times of symmetric Lévy processes and recurrent random walks. Ann. Probab. 22 626–658. · Zbl 0815.60073 · doi:10.1214/aop/1176988723 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.