Yurachkivs’kyj, A. P.; Ivanenko, D. O. Estimation of matrix autoregression process parameters with nonstationary noise. (Ukrainian, English) Zbl 1121.62076 Teor. Jmovirn. Mat. Stat. 72, 158-171 (2005); translation in Theory Probab. Math. Stat. 72, 177-191 (2006). A matrix autoregression model \(\xi_k=A\xi_{k-1}+\varepsilon_k\) is considered with \(\varepsilon_k\) being a martingale-differences sequence. The least squares estimate for \(A\) is \[ \hat A_n=(\sum_{i=1}^n\xi_i\xi_{i-1}^T) (\sum_{i=1}^n\xi_i\xi_i^T)^{+} \] (\(B^{+}\) being generalized inverse to \(B\)). The asymptotic distribution (maybe non-Gaussian) of \(\sqrt{n}(\hat A_n-A)\) is described. A scalar AR(r) model is considered as an example. Reviewer: R. E. Maiboroda (Kyïv) MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62F10 Point estimation 62M09 Non-Markovian processes: estimation 62F12 Asymptotic properties of parametric estimators 60F05 Central limit and other weak theorems Keywords:martingale-differences innovations; least squares estimate; asymptotic distribution PDFBibTeX XMLCite \textit{A. P. Yurachkivs'kyj} and \textit{D. O. Ivanenko}, Teor. Ĭmovirn. Mat. Stat. 72, 158--171 (2005; Zbl 1121.62076); translation in Theory Probab. Math. Stat. 72, 177--191 (2006) Full Text: Link