Yadrenko, M. I.; Semenovs’ka, N. The problem of estimation of unknown mean value for some correlation models of homogeneous and isotropic random fields. (Ukrainian, English) Zbl 1121.62084 Teor. Jmovirn. Mat. Stat. 72, 172-179 (2005); translation in Theory Probab. Math. Stat. 72, 193-201 (2006). Let \(\xi(x),x\in\mathbb R^n\), be a homogeneous and isotropic random field with the correlation function \(E\xi(x)\xi(y)=\varphi(r), r=| x-y| \). For these random fields with correlation functions from the C. E. Buell [J. Appl. Meteorology, 11, 51-59 (1972)] list of correlation functions the authors obtain explicit formulas for computation of the least squares means linear estimates (and the mean square errors) of the unknown expectation \(E\xi(x)=a\) of the field. For more results see N. V. Semenovs’ka and M. I. Yadrenko [Teor. Jmovirn. Mat. Stat. 69, 162-171 (2004); translation in Theory Probab. Math. Stat. 69, 175-185 (2004; Zbl 1097.60038)]. Reviewer: Mikhail P. Moklyachuk (Kyïv) MSC: 62M40 Random fields; image analysis 60G60 Random fields Keywords:homogeneous isotropic random field; correlation model Citations:Zbl 1097.60038 PDFBibTeX XMLCite \textit{M. I. Yadrenko} and \textit{N. Semenovs'ka}, Teor. Ĭmovirn. Mat. Stat. 72, 172--179 (2005; Zbl 1121.62084); translation in Theory Probab. Math. Stat. 72, 193--201 (2006) Full Text: Link