Liu, Zhongyun; Zhang, Yulin; Rui, Ralha Computing the square roots of matrices with central symmetry. (English) Zbl 1121.65045 Appl. Math. Comput. 186, No. 1, 715-726 (2007). The reduced forms of centrosymmetric, skew-centrosymmetric and centro-Hermitian matrices are exploited to study the structure of square roots of such matrices and to design algorithms for computing those square roots. A new structured algorithm to compute the square root is proposed that is approximately 5.5 times cheaper than the standard one. In the case of centro-Hermitian matrices, the corresponding structured algorithm is approximately eight times cheaper than the standard one. The stability and the accuracy of the algorithms proposed are discussed. Reviewer: Petko Hr. Petkov (Sofia) Cited in 3 Documents MSC: 65F30 Other matrix algorithms (MSC2010) 15A24 Matrix equations and identities Keywords:matrix square root; central symmetry; Schur algorithm; centrosymmetric; skew-centrosymmetric; centro-Hermitian matrices; algorithms; stability PDF BibTeX XML Cite \textit{Z. Liu} et al., Appl. Math. Comput. 186, No. 1, 715--726 (2007; Zbl 1121.65045) Full Text: DOI Link References: [1] Andrew, A. L., Eigenvectors of certain matrices, Linear Alg. Appl., 7, 151-162 (1973) · Zbl 0255.65021 [2] Bartels, R. H.; Stewart, G. W., Solution of equation \(AX + XB =C\), Comm. ACM, 15, 820-826 (1972) · Zbl 1372.65121 [3] Björck, A.; Hammarling, S., A Schur method for the square root of a matrix, Linear Alg. Appl., 52/53, 127-140 (1983) · Zbl 0515.65037 [4] Cadzow, J. A., Signal enhancement – a composite property mapping algorithm, IEEE Trans. Acoust. Speech Signal Proc., 36, 49-62 (1988) · Zbl 0649.93059 [5] Cross, G. W.; Lancaster, P., Square roots of complex matrices, Linear Multi-linear Alg., 1, 289-293 (1974) · Zbl 0283.15008 [6] Datta, L.; Morgera, S., On the reducibility of centrosymmetric matrices applications in engineering problems, Circ. Syst. Signal Process, 8, 71-96 (1989) · Zbl 0674.15005 [7] Davis, P. I.; Higham, N. J., A Parlett-Schur algorithm for computing matrix functions, SIAM J. Matrix Anal. Appl., 25, 464-485 (2003) · Zbl 1052.65031 [8] Faßbender, H.; Ikramov, K. D., Computing matrix-vector products with centrosymmetric and centrohermitian matrices, Linear Alg. Appl., 364, 235-241 (2003) · Zbl 1016.65022 [9] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore · Zbl 0865.65009 [10] Higham, N. J., Computing real square roots of a real matrix, Linear Alg. Appl., 88/89, 405-430 (1987) · Zbl 0625.65032 [11] Higham, N. J.; Mackey, D. S.; Mackey, N.; Tisseur, F., Function preserving matrix groups and iterations for the matrix square root, SIAM J. Matrix Anal. Appl., 26, 849-877 (2005) · Zbl 1079.65053 [12] Hill, R. D.; Betas, R. G.; Waters, S. R., On centrohermitian matrices, SIAM J. Matrix Anal. Appl., 11, 128-133 (1990) · Zbl 0709.15021 [13] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0729.15001 [14] Lee, A., Centrohermitian and skew-centrohermitian matrices, Linear Alg. Appl., 29, 205-210 (1980) · Zbl 0435.15019 [15] Li, H.; Stoica, P.; Li, J., Computationally efficient maximum likelihood estimation of structured covariance matrices, IEEE Trans. Signal Proc., 47, 1314-1323 (1999) · Zbl 0986.62014 [16] Liu, Z. Y., Some properties of centrosymmetric matrices, Appl. Math. Comput., 141, 17-26 (2002) [17] Liu, Z.; Chen, H.; Cao, H., The computation of the principal square roots of centrosymmetric \(h\)-matrices, Appl. Math. Comp., 175, 319-329 (2006) · Zbl 1093.65044 [18] Meyer, C. D., Matrix Analysis and Applied Linear Algebra (2000), SIAM: SIAM Philadelphia [20] Parlett, B. N., A recurrence among the elements of functions of triangular matrices, Linear Alg. Appl., 14, 117-121 (1976) · Zbl 0353.65027 [21] Smith, M. I., A Schur algorithm for computing matrix \(p\) th roots, SIAM J. Matrix Anal. Appl., 24, 971-989 (2003) · Zbl 1040.65038 [22] Weaver, J., Centrosymmetric (cross-symmetric) matrices their basic properties eigenvalues and eigenvectors, Amer. Math. Monthly, 92, 711-717 (1985) · Zbl 0619.15021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.