zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An explicit Numerov-type method for second-order differential equations with oscillating solutions. (English) Zbl 1121.65086
Summary: A new explicit Numerov-type method is introduced. The construction is based on a modification of a sixth-order explicit Numerov-type method recently developed by {\it Ch. Tsitouras} [ibid. 45, 37--42 (2003; Zbl 1035.65078)]. Two free parameters are added in order to nullify the phase-lag and the amplification. The method is useful only when a good estimate of the frequency of the problem is known in advance. The parameters depend on the product of the estimated frequency and the stepsize. Numerical results obtained for well-known test problems show the efficiency of the new method.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Tsitouras, Ch.: Explicit numerov type methods with reduced number of stages. Comput. math. Appl. 45, 37-42 (2003) · Zbl 1035.65078
[2] Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving ordinary differential equations I, nonstiff problems. (1993) · Zbl 0789.65048
[3] Brusa, L.; Nigro, L.: A one-step method for direct integration of structural dynamic equations. Internat. J. Numer. methods engrg. 15, 685-699 (1980) · Zbl 0426.65034
[4] Chawla, M. M.; Rao, P. S.: A noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. comput. Appl. math. 11, 277-281 (1984) · Zbl 0565.65041
[5] Chawla, M. M.; Rao, P. S.: An explicit sixth-order method with phase-lag of order eight for y”=$f(t,y)$. J. comput. Appl. math. 17, 365-368 (1987) · Zbl 0614.65084
[6] Simos, T. E.; Williams, T. E.: New insights in the development of numerov-type methods with minimal phase-lag for the numerical solution of the Schrödinger equation. Comp. chem. 25, 77-82 (2001) · Zbl 1064.65070
[7] Van Der Houwen, P. J.; Sommeijer, B. P.: Explicit Runge--$Kutta(--Nystr\"om)$ methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. anal. 24, 595-617 (1987) · Zbl 0624.65058
[8] Raptis, A. D.; Simos, T. E.: A four-step phase-fitted method for the numerical integration of second order initial-value problems. Bit 31, 160-168 (1991) · Zbl 0726.65089
[9] Simos, T. E.: A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Internat. J. Comp. math. 39, 135-140 (1991) · Zbl 0747.65061
[10] Paternoster, B.: A phase-fitted collocation based Runge--Kutta--Nyström method. Appl. numer. Math. 35, 339-355 (2000) · Zbl 0979.65063
[11] Anastassi, Z. A.; Simos, T. E.: Special optimized Runge--Kutta methods for ivp’s with oscillating solutions. Internat. J. Modern phys. C 15, 1-15 (2004) · Zbl 1083.65066
[12] Anastassi, Z. A.; Simos, T. E.: A dispersive-fitted and dissipative-fitted explicit Runge--Kutta method for the numerical solution of orbital problems. New astronom. 10, 31-37 (2004)
[13] Anastassi, Z. A.; Simos, T. E.: An optimized Runge--Kutta method for the solution of orbital problems. J. comput. Appl. math. 175, 1-9 (2005) · Zbl 1063.65059
[14] Van De Vyver, H.: An embedded $5(4)$ pair of modified explicit Runge--Kutta methods for the numerical solution of the Schrödinger equation. Internat. J. Modern phys. C 16, 879-894 (2005) · Zbl 1103.65319
[15] Ixaru, L. Gr.; Berghe, G. Vanden: Exponential Fitting. (2004) · Zbl 1105.65082
[16] Van De Vyver, H.: Frequency evaluation for exponentially-fitted Runge--Kutta methods. J. comput. Appl. math. 184, 442-463 (2005) · Zbl 1077.65082
[17] Van De Vyver, H.: On the generation of P-stable exponentially fitted Runge--Kutta--Nyström methods by exponentially fitted Runge--Kutta methods. J. comput. Appl. math. 188, 309-318 (2006) · Zbl 1086.65073
[18] Van De Vyver, H.: A fourth-order symplectic exponentially fitted integrator. Comput. phys. Comm. 174, 255-262 (2006) · Zbl 1196.37122
[19] Wang, Z.: Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. phys. Comm. 174, 109-118 (2006) · Zbl 1196.65061
[20] Vigo-Aguiar, J.; Simos, T. E.: An exponentially fitted and trigonometrically fitted method for the numerical solution of orbital problems. Astrophys. J. 122, 1656-1660 (2001)
[21] Coleman, J. P.: Order conditions for a class of two-step methods for y”=$f(x,y)$. IMA J. Numer. anal. 23, 197-220 (2003) · Zbl 1022.65080
[22] Franco, J. M.: A class of explicit two-step hybrid methods for second-order ivps. J. comput. Appl. math. 187, 41-57 (2006) · Zbl 1082.65071
[23] Lambert, J. D.; Watson, I. A.: Symmetric multistep methods for periodic initial value problems. J. inst. Math. appl. 18, 189-202 (1976) · Zbl 0359.65060
[24] Chawla, M. M.; Sharma, S. R.: Intervals of periodicity and absolute stability of explicit Nyström methods for y”=$f(x,y)$. Bit 21, 455-464 (1981) · Zbl 0469.65048
[25] Coleman, J. P.; Ixaru, L. Gr.: P-stability and exponential-Fitting methods for y’=$f(x,y)$. IMA J. Numer. anal. 16, 179-199 (1996) · Zbl 0847.65052
[26] Van De Vyver, H.: Stability and phase-lag analysis of explicit Runge--Kutta methods with variable coefficients for oscillatory problems. Comput. phys. Comm. 173, 115-130 (2005) · Zbl 1196.65117
[27] Coleman, J. P.; Duxbury, S. C.: Mixed collocation methods for y”=$f(x,y)$. J. comput. Appl. math. 126, 47-75 (2000) · Zbl 0971.65073
[28] Franco, J. M.; Palacios, M.: High-order P-stable multistep methods. J. comput. Appl. math. 30, 1-10 (1990) · Zbl 0726.65091
[29] Farto, J. M.; Gonzaléz, A. B.; Martin, P.: An algorithm for the systematic construction of solutions to perturbed problems. Comput. phys. Comm. 111, 110-132 (1998)
[30] Coleman, J. P.: Numerical methods for y”=$f(x,y)$ via rational approximations for the cosine. IMA J. Numer. anal. 9, 145-165 (1989) · Zbl 0675.65072