zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conjugate gradient method for fuzzy symmetric positive definite system of linear equations. (English) Zbl 1121.65311
Summary: In this paper the conjugate gradient method, for solving fuzzy symmetric positive definite system of linear equation is considered. The method in detail is discussed and followed by convergence theorem and illustrated by solving some numerical examples.

65F10Iterative methods for linear systems
Full Text: DOI
[1] Allahviranloo, T.: Numerical methods for fuzzy system of linear equations. Appl. math. Comput. 155, 493-502 (2004) · Zbl 1067.65040
[2] Barrett, R.; Berry, M.; Chan, T.: Templates for the solution of linear systems. (2000)
[3] Cong-Xin, W.; Ming, M.: Embedding problem of fuzzy number space: part: I. Fuzzy sets syst. 44, 33-38 (1991) · Zbl 0757.46066
[4] Datta, B. N.: Numerical linear algebra and applications. (1995) · Zbl 1182.65001
[5] Dubois, D.; Prade, H.: Fuzzy sets and systems: theory and application. (1980) · Zbl 0444.94049
[6] Friedman, M.; Ming, M.; Kandel, A.: Fuzzy linear systems. Fuzzy sets syst. 96, 201-209 (1998) · Zbl 0929.15004
[7] Friedman, M.; Ming, M.; Kandel, A.: Duality in fuzzy linear systems. Fuzzy sets syst. 109, 55-58 (2000) · Zbl 0945.15002
[8] Wang, X.; Zhong, Z.; Ha, M.: Iteration algorithms for solving a system of fuzzy linear equations. Fuzzy sets syst. 119, 121-128 (2001) · Zbl 0974.65035