[1] |
Arrow, K. J.; Intriligator, M. D.: Handbook of mathematical economics. (1982) · Zbl 0522.90001 |

[2] |
Codenotti, B., Pemmaraju, S., Varadarajan, K., 2004. Algorithms column: The computation of market equilibrium, ACM SIGACT News, November 10. Available from: <http://www.cs.uchicago.edu/ codenott/SIGACT_NEWS_LAST.pdf>. |

[3] |
Daniele, P.; Maugeri, A.: Variational inequalities and discrete and continuum models of network equilibrium problems. Mathematical and computer modelling 35, 689-708 (2002) · Zbl 0994.90033 |

[4] |
Gao, Z. Y.; Song, Y. F.: A reserve capacity model of optimal signal control with user-equilibrium route choice. Transportation research part B 36, 313-323 (2002) |

[5] |
Gao, Z. Y.; Sun, H. J.; Shan, L. L.: A continuous equilibrium network design model and algorithm for transit system. Transportation research part B 38, 235-250 (2004) |

[6] |
Gao, Z. Y.; Wu, J. J.; Sun, H. J.: Solution algorithm for the bi-level discrete network design problem. Transportation research part B 39, 479-495 (2005) |

[7] |
Harker, P. T.: Generalized Nash games and quasi-variational inequalities. European journal of operational research 54, No. 1, 81-94 (1991) · Zbl 0754.90070 |

[8] |
Hawkins, R. J.; Frieden, B. R.: Fisher information and equilibrium distributions in econophysics. Physics letters A 322, 126-130 (2004) · Zbl 1118.81362 |

[9] |
Huang, T.: A course of game theory and its applications (in chinese). (2004) |

[10] |
Huang, G. Y.; Zhou, J.: Fare competition between highway and public transport (in chinese). Journal of southeast university (Natural science edition) 34, No. 2, 268-273 (2004) |

[11] |
Ichiishi, T.: Game theory for economic analysis. (1983) · Zbl 0522.90104 |

[12] |
Jain, K., Vazirani, V.V., Ye, Y.Y., 2005. Market equilibria for homothetic, quasi-concave utilities and economies of scale in production. Technical Paper, Management, Science and Engineering, Stanford, CA. Available from: <http://www.stanford.edu/ yyye/soda2.pdf>. · Zbl 1297.91107 |

[13] |
Li, J.; Fan, B. Q.: Public transport operation scale analysis with game theory (in chinese). Urban public transport 2, 9-10 (2003) |

[14] |
Lourdes, Z.: A network equilibrium model for oligopolistic competition in city bus services. Transportation research part B 32, 413-422 (1998) |

[15] |
Nagurney, A.: A multiclass, multicriteria traffic network equilibrium model. Mathematical and computer modelling 32, 393-411 (2000) · Zbl 0965.90003 |

[16] |
Nagurney, A.; Dong, J.: A multiclass, multicriteria traffic network equilibrium model with elastic demand. Transportation research part B 36, 445-469 (2002) |

[17] |
Ogaki, M.: Aggregation under complete markets. Review of economic dynamics 6, 977-986 (2003) |

[18] |
Pang, J. S.; Yang, J. M.: Parallel Newton’s method for computing the nonlinear complementarity problems. Mathematical programming 42, No. 3, 407-420 (1998) |

[19] |
Patriksson, M.; Rockafellar, R. T.: A mathematical model and descent algorithm for bilevel traffic management. Transportation science 36, No. 3, 271-291 (2002) · Zbl 1134.90319 |

[20] |
Samuelson, L.: Evolutionary games and equilibrium selection. (1997) · Zbl 0953.91500 |

[21] |
Xiao, B. C.; Peng, J.: A study of passenger transport pricing strategy for China’s civil aviation industry (in chinese). Journal of sichuan university (Social science edition) 6, 10-15 (2002) |

[22] |
Yang, S. L.; Zhang, X.: A game theoretical analysis of marketable air fare (in chinese). Commercial research 259, 10-13 (2002) |

[23] |
Zhang, W. Y.: Game theory and information economics (in chinese). (1996) |

[24] |
Zhou, J.; Xu, Y.: Generalized Nash managing game model for transit network (in chinese). Journal of system engineering 16, No. 4, 261-266 (2001) |

[25] |
Zhou, J.; Lam, W. H. K.; Heydecker, B. G.: The generalized Nash equilibrium model for oligopolistic transit market with elastic demand. Transportation research part B 39, 519-544 (2005) |