zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stationary patterns caused by cross-diffusion for a three-species prey-predator model. (English) Zbl 1121.92069
Summary: We study a system arising from a three-component prey-predator model with prey- dependent and ratio-dependent functional responses, where cross-diffusion is included in such a way that the predator chases the prey and the prey runs away from the predator. We prove that cross-diffusion can generate stationary patterns (nonconstant positive steady states).

35K57Reaction-diffusion equations
35B35Stability of solutions of PDE
35B40Asymptotic behavior of solutions of PDE
35B32Bifurcation (PDE)
35J55Systems of elliptic equations, boundary value problems (MSC2000)
Full Text: DOI
[1] Hsu, S. B.; Hwang, T. W.; Kuang, Y.: A ratio-dependent food chain model and its applications to biological control. Math. biosci. 181, 55-83 (2003) · Zbl 1036.92033
[2] Ebert, D.; Lipstich, M.; Mangin, K. L.: The effect of parasites on host population density and extinction: experimental epidemiology with daphnia and six microparasites. Am. natural. 156, 459-477 (2000)
[3] Hwang, T. W.; Kuang, Y.: Deterministic extinction effect of parasites on host populations. J. math. Biol. 46, 17-30 (2003) · Zbl 1015.92042
[4] Wang, M. X.: Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion. Physica D 196, 172-192 (2004) · Zbl 1081.35025
[5] Pang, P. Y. H.; Wang, M. X.: Strategy and stationary pattern in a three-species predator-prey model. J. differential equations 200, No. 2, 245-273 (2004) · Zbl 1106.35016
[6] Ni, W. M.: Diffusion, cross-diffusion and their spike-layer steady states. Notices amer. Math. soc. 45, No. 1, 9-18 (1998) · Zbl 0917.35047
[7] Okubo, A.: Diffusion and ecological problems: mathematical models. (1980) · Zbl 0422.92025
[8] Amann, H.: Dynamic theory of quasilinear parabolic equations II: Reaction-diffusion systems. Diff. int. Eq. 3, 13-75 (1990) · Zbl 0729.35062
[9] Choi, Y. S.; Lui, R.; Yamada, Y.: Existence of global solutions for the shigesada-kawasaki-teramoto model with strongly coupled cross-diffusion. Discrete contin. Dyn. syst. 10, No. 3, 719-730 (2004) · Zbl 1047.35054
[10] Turing, A.: The chemical basis of morphogenesis. Philos. trans. Royal soc. B 237, 37-72 (1952)
[11] Gierer, A.; Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30-39 (1972) · Zbl 0297.92007
[12] Iron, D.; Ward, M. J.; Wei, J. C.: The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Phys. D 150, No. 1 -- 2, 25-62 (2001) · Zbl 0983.35020
[13] Wei, J. C.; Winter, M.: Existence and stability of multiple-spot solutions for the gray-Scott model in $\Bbb R$2. Phys. D 176, No. 3 -- 4, 147-180 (2003) · Zbl 1014.37036
[14] Yanagida, E.: Mini-maximizer for reaction-diffusion systems with skew-gradient structure. J. of differential equations 179, No. 1, 311-335 (2002) · Zbl 0993.35047
[15] Davidson, F. A.; Rynne, B. P.: A priori bounds and global existence of solutions of the steady-state sel’kov model. Proc. roy. Soc. Edinburgh A 130, 507-516 (2000) · Zbl 0960.35026
[16] Wang, M. X.: Non-constant positive steady states of the sel’kov model. J. differential equations 190, No. 2, 600-620 (2003) · Zbl 1163.35362
[17] Lin, C. S.; Ni, W. M.; Takagi, I.: Large amplitude stationary solutions to a chemotaxis systems. J. differential equations 72, 1-27 (1988) · Zbl 0676.35030
[18] Wang, X. F.; Wu, Y. P.: Qualitative analysis on a chemotactic diffusion model for two species competing for a limited resource. Quarterly appl. Math. 60, No. 3, 505-531 (2002) · Zbl 1039.35131
[19] Wu, Y. P.: Existence of stationary solutions with transition layers for a class of cross-diffusion systems. Proc. of the royal soc. Of Edinburgh 132A, 1493-1511 (2002) · Zbl 1054.34089
[20] Lou, Y.; Martinez, S.; Ni, W. M.: On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete contin. Dyn. syst. 6, No. 1, 175-190 (2000)
[21] Lou, Y.; Ni, W. M.: Diffusion, self-diffusion and cross-diffusion. J. differential equations 131, 79-131 (1996) · Zbl 0867.35032
[22] Lou, Y.; Ni, W. M.: Diffusion vs. Cross-diffusion: an elliptic approach. J. differential equations 154, 157-190 (1999) · Zbl 0934.35040
[23] X.F. Chen, W.M. Ni, Y.W. Qi and M.X. Wang, A strongly coupled predator-prey system with non-monotonic functional response, Preprint.
[24] Du, Y. H.; Lou, Y.: Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc. roy. Soc. Edinburgh 131A, 321-349 (2001) · Zbl 0980.35028
[25] Ikeda, T.; Mimura, M.: An interfacial approach to regional segregation of two competing species mediated by a predator. J. math. Biol. 31, 215-240 (1993) · Zbl 0774.92023
[26] Kan-On, Y.: Existence and instability of Neumann layer solutions for a 3-component Lotka-Volterra model with diffusion. J. math. Anal. appl. 243, 357-372 (2000) · Zbl 0963.35012
[27] Pang, P. Y. H.; Wang, M. X.: Non-constant positive steady states of a predator-prey system with nonmonotonic functional response and diffusion. Proc. London math. Soc. 88, No. 1, 135-157 (2004) · Zbl 1134.35373
[28] Pang, P. Y. H.; Wang, M. X.: Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc. roy. Soc. Edinburgh A 133, No. 4, 919-942 (2003) · Zbl 1059.92056
[29] Wang, M. X.: Stationary patterns of strongly coupled predator-prey models. J. math. Anal. appl. 292, No. 2, 484-505 (2004) · Zbl 1160.35325
[30] Brown, K. J.; Davidson, F. A.: Global bifurcation in the Brusselator system. Nonlinear analysis, TMA 24, 1713-1725 (1995) · Zbl 0829.35010
[31] Capasso, V.; Diekmann, O.: Mathematics inspired by biology, lecture notes in mathematics. 1714 (1999)
[32] Cross, M. C.; Hohenberg, P. S.: Pattern formation outside of equilibrium. Rev. modern phys. 65, 851-1112 (1993)
[33] Ikeda, T.; Nishiura, Y.: Pattern selection for two breathers. SIAM J. Appl. math. 54, No. 1, 195-230 (1994) · Zbl 0791.35063
[34] Leach, J. A.; Wei, J. C.: Pattern formation in a simple chemical system with general orders of autocatalysis and decay. I. stability analysis. Physica. D 180, No. 3 -- 4, 185-209 (2003) · Zbl 1027.80010
[35] Mimura, M.; Nishiura, Y.: Pattern formation in coupled reaction-diffusion systems. Japan J. Indust. appl. Math. 12, No. 3, 385-424 (1995) · Zbl 0849.35053
[36] Castets, V.; Dulos, E.; Boissonade, J.; Dekepper, P.: Experimental evidence of a sustained Turing-type equilibrium chemical pattern. Phys. rev. Lett. 64, 2953-2956 (1990)
[37] Ouyang, Q.; Li, R.; Li, G.; Swinney, H. L.: Dependence of Turing pattern wavelength on diffusion rate. Notices J. Chem. phys. 102, No. 1, 2551-2555 (1995)
[38] Nirenberg, L.: Topics in nonlinear functional analysis. (2001) · Zbl 0992.47023