zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability regions in the parameter space: $D$-decomposition revisited. (English) Zbl 1121.93028
Summary: The challenging problem in linear control theory is to describe the total set of parameters (controller coefficients or plant characteristics) which provide stability of a system. For the case of one complex or two real parameters and SISO system (with a characteristic polynomial depending linearly on these parameters) the problem can be solved graphically by use of the so-called $D$-decomposition. Our goal is to extend the technique and to link it with general $M - \Delta$ framework. In this way we investigate the geometry of $D$-decomposition for polynomials and estimate the number of root invariant regions. Several examples verify that these estimates are tight. We also extend $D$-decomposition for the matrix case, i.e. for MIMO systems. For instance, we partition real axis or complex plane of the parameter $k$ into regions with invariant number of stable eigenvalues of the matrix $A + kB$. Similar technique can be applied to double-input double-output systems with two parameters.

MSC:
93C05Linear control systems
93D25Input-output approaches to stability of control systems
93D99Stability of control systems
WorldCat.org
Full Text: DOI
References:
[1] Ackermann, J.: Robust control: the parameter space approach. (2002)
[2] Ackermann, J.; Kaesbauer, D.: Stable polyhedra in parameter space. Automatica 39, 937-943 (2003) · Zbl 1022.93016
[3] Andronov, A. A.; Mayer, A. G.: The simplest linear time-delay systems. Automatica i telemekhanika 7, 95-106 (1946)
[4] Barmish, B. R.: New tools for robustness of linear systems. (1995) · Zbl 1094.93517
[5] Barmish, B., & Polyak, B. T. (1993). The volumetric singular value and robustness of feedback control systems. Proceedings of the 32nd CDC (pp. 521-523). San Antonio, TX.
[6] Bhattacharyya, S. P.; Chapellat, H.; Keel, L.: Robust control: the parametric approach. (1995) · Zbl 0838.93008
[7] Bhattacharyya, S. P.; Tantaris, R. N.; Keel, L. H.: Stabilization of discrete-time systems by first-order controllers. IEEE transactions on automatic control 48, No. 5, 858-861 (2003)
[8] Chen, J.; Fan, M. K. H.; Nett, C. N.: Structural singular value and stability of uncertain polynomials, II: A missing link. System control letters 23, No. 2, 97-109 (1994) · Zbl 0826.93055
[9] Evans, W. R.: Control system dynamics. (1954)
[10] Francis, B.: A course in H$\infty $control theory. (1987)
[11] Frazer, R. A.; Duncan, W. J.: On the criteria for stability for small motions. Proceedings of royal society series A 124, 642-654 (1929) · Zbl 55.0453.04
[12] Gryazina, E. N.: On the D-decomposition theory. Automation and remote control 65, No. 12, 1872-1884 (2004) · Zbl 1082.93040
[13] Gryazina, E. N., & Polyak, B. T. (2005). On the root invariant regions structure for linear systems. Proceedings of the 16th IFAC world congress, Prague, Czech Republic.
[14] Hamann, J. C.; Barmish, B. R.: Convexity of frequency response arcs associated with a stable polynomial. IEEE transactions on automatic control 38, No. 6, 904-915 (1993) · Zbl 0786.93080
[15] Hinrichsen, D.; Pritchard, A.: Stability radius for structured perturbations and the algebraic Riccati equation. System control letters 8, 105-113 (1986) · Zbl 0626.93054
[16] Keel, L. H., & Bhattacharyya, S. P. (2005). PID controller synthesis free of analytical models. Proceedings of the 16th IFAC world congress, Prague, Czech Republic.
[17] Kiselev, O. N.; Polyak, B. T.: Design of low-order controllers with H$\infty $or maximal robustness performance index. Automation and remote control 60, No. 3, 393-402 (1999) · Zbl 1273.93064
[18] Kogan, J.: Robust stability and convexity. (1995) · Zbl 0827.93002
[19] Lehnigk, S. H.: Stability theorems for linear motions with an introduction to Liapunov’s direct method. (1966) · Zbl 0144.10801
[20] Mitrovic, D.: Graphical analysis and synthesis of feedback control systems. I--theory and analysis, II--synthesis, III--sampled-data feedback control systems. AIEE transactions (Application and industry) 77, 476-496 (1959)
[21] Neimark, Y. I.: Search for the parameter values that make automatic control system stable. Automatica i telemekhanika 9, No. 3, 190-203 (1948)
[22] Neimark, Y. I.: Stability of the linearized systems. (1949)
[23] Neimark, Y. I.: Robust stability and D-partition. Automation and remote control 53, No. 7, 957-965 (1992)
[24] Nikolayev, Y. P.: The set of stable polynomials of linear discrete systems: its geometry. Automation and remote control 63, No. 7, 1080-1088 (2002)
[25] Ozguler, A. B., & Kocan, A. A. (1994). An analytic determination of stabilizing feedback gains, Report, Institut fur Dynamische Systeme, Universitat Bremen.
[26] Qiu, L.; Bernhardsson, B.; Rantzer, A.; Davison, E. J.; Young, P. M.; Doyle, J. C.: A formula for computation of the real stability radius. Automatica 31, No. 6, 879-890 (1995) · Zbl 0839.93039
[27] Saadaoui, K.; Ozguler, A. B.: A new method for the computation of all stabilizing controllers of a given order. International journal of control 78, No. 1, 14-28 (2005) · Zbl 1077.93047
[28] Siljak, D.: Analysis and synthesis of feedback control systems in the parameter plane. I--linear continuous systems, II--sampled-data systems. AIEE transactions (Application and industry) 83, 449-466 (1964)
[29] Siljak, D.: Generalization of the parameter plane method. IEEE transactions on automatic control 11, No. 1, 63-70 (1966)
[30] Siljak, D.: Nonlinear systems: the parameter analysis and design. (1969) · Zbl 0194.39302
[31] Sokolov, A. A.: A criterion of stability for linear regulated systems with distributed parameters. Engineering review 2, No. 2, 3-26 (1946) · Zbl 0061.18802
[32] Tsypkin, Ya.Z.; Polyak, B. T.: Frequency domain criteria for lp-robust stability of continuous linear systems. IEEE transactions on automatic control 36, No. 12, 1464-1469 (1991) · Zbl 0741.93062
[33] Vishnegradsky, I.: Sur la theorie generale des regulateurs. Comptes rendus de l’academic des sciences 83, 318-321 (1876)
[34] Walker, R. J.: Algebraic curves. (1950) · Zbl 0039.37701
[35] Zhou, K.; Doyle, J. C.; Glover, K.: Robust and optimal control. (1996) · Zbl 0999.49500