×

Zero-sum problems in finite Abelian groups: a survey. (English) Zbl 1122.11013

The authors give a very useful and comprehensive survey on results and open problems in the area of combinatorial zero sum problems in finite abelian groups. They concentrate on results after the appearance of a survey article by Y. Caro, ”Zero-sum problems – a survey.” [Discrete Math. 152, No. 1–3, 93–113 (1996; Zbl 0856.05068)]. The useful bibliography contains 172 entries.

MSC:

11B50 Sequences (mod \(m\))
11P70 Inverse problems of additive number theory, including sumsets
11B75 Other combinatorial number theory

Citations:

Zbl 0856.05068
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alford, W.R.; Granville, A.; Pomerance, C., There are infinitely many carmicheal numbers, Ann. math., 140, 703-722, (1994) · Zbl 0816.11005
[2] Alon, N., Tools from higher algebra, (), 1749-1783 · Zbl 0848.05073
[3] Alon, N., Combinatorial nullstellensatz, Combin. probab. comput., 8, 7-29, (1999) · Zbl 0920.05026
[4] Alon, N.; Friedland, S.; Kalai, G., Regular subgraphs of almost regular graphs, J. combin. theory ser. B, 37, 79-91, (1984) · Zbl 0527.05059
[5] Baayen, P.C., Een combinatorisch problem voor eindige abelse groepen, MC syllabus 5, colloquium discrete wiskunde, (1968), Mathematical Centre Amsterdam
[6] P.C. Baayen, \(C_2 \oplus C_2 \oplus C_2 \oplus C_{2 n}!\), Reports ZW-1969-006, Mathematical Centre, Amsterdam, 1969.
[7] Baginski, P.; Chapman, S.T.; McDonald, K.; Pudwell, L., On cross numbers of minimal zero sequences in certain cyclic groups, Ars. combin., 70, 47-60, (2004) · Zbl 1095.20028
[8] Baker, R.C.; Schmidt, W., Diophantine problems in variables restricted to the values of 0 and 1, J. number theory, 12, 460-486, (1980) · Zbl 0444.10013
[9] E. Balandraud, Un nouveau point de vue isopérimétrique appliqué au théorème de Kneser, manuscript.
[10] Balister, P.; Caro, Y.; Rousseau, C.; Yuster, R., Zero-sum square matrices, European. J. combin., 23, 489-497, (2002) · Zbl 1020.15019
[11] Bialostocki, A.; Bialostocki, G.; Caro, Y.; Yuster, R., Zero-sum ascending waves, J. combin. math. combin. comput., 32, 103-114, (2000) · Zbl 0949.05005
[12] Bialostocki, A.; Dierker, P., Zero sum Ramsey theorems, Congr. numer., 70, 119-130, (1990) · Zbl 0695.05050
[13] Bialostocki, A.; Dierker, P., On the erdős – ginzburg – ziv theorem and the Ramsey numbers for stars and matchings, Discrete math., 110, 1-8, (1992) · Zbl 0774.05065
[14] Bialostocki, A.; Dierker, P.; Grynkiewicz, D.; Lotspeich, M., On some developments of the erdős – ginzburg – ziv theorem II, Acta arith., 110, 173-184, (2003) · Zbl 1069.11007
[15] A. Bialostocki, M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv theorem, in: Sets, Graphs and Numbers, vol. 60, Colloquia Mathematica Societatis Janos Bolyai, North-Holland, Amsterdam, New York, 1992, pp. 97-117. · Zbl 1042.11510
[16] Bollobás, B.; Leader, I., The number of \(k\)-sums modulo \(k\), J. number theory, 78, 27-35, (1999) · Zbl 0929.11008
[17] Bovey, J.D.; Erdős, P.; Niven, I., Conditions for zero sum modulo \(n\), Canad. math. bull., 18, 27-29, (1975) · Zbl 0314.10040
[18] Brakemeier, W., Eine anzahlformel von zahlen modulo \(n\), Monatsh math., 85, 277-282, (1978) · Zbl 0395.10006
[19] Brüdern, J.; Godinho, H., On Artin’s conjecture, II: pairs of additive forms, Proc. London math. soc., 84, 513-538, (2002) · Zbl 1016.11013
[20] Caro, Y., Zero-sum Ramsey numbers-stars, Discrete math., 104, 1-6, (1992) · Zbl 0771.05068
[21] Caro, Y., Zero-sum subsequences in abelian non-cyclic groups, Israel J. math., 92, 221-233, (1995) · Zbl 0848.20047
[22] Caro, Y., Remarks on a zero-sum theorem, J. combin. theory ser. A, 76, 315-322, (1996) · Zbl 0865.20037
[23] Caro, Y., Zero-sum problems — a survey, Discrete math., 152, 93-113, (1996) · Zbl 0856.05068
[24] Caro, Y., Problems in zero-sum combinatorics, J. London math. soc., 55, 427-434, (1997) · Zbl 0883.05102
[25] Chapman, S.T.; Freeze, M.; Gao, W.; Smith, W.W., On Davenport’s constant of finite abelian groups, Far east J. math. sci., 2, 47-54, (2002) · Zbl 1149.11301
[26] Chapman, S.T.; Freeze, M.; Smith, W.W., Minimal zero sequences and the strong Davenport constant, Discrete math., 203, 271-277, (1999) · Zbl 0944.20013
[27] S.T. Chapman, M. Freeze, W.W. Smith, Equivalence classes of minimal zero-sequences modulo a prime, Ideal Theoretic Methods in Commutative Algebra, Lecture Notes in Pure and Applied Mathematics, vol. 220, Marcel Dekker, New York, 2001. pp. 133-145. · Zbl 1003.20047
[28] Chapman, S.T.; Geroldinger, A., On cross numbers of minimal zero sequences, Australasian J. combin., 14, 85-92, (1996) · Zbl 0866.11018
[29] Chapman, S.T.; Smith, W.W., A characterization of minimal zero-sequences of index one in finite cyclic groups, Integers, 5, 1, (2005), (Paper A27) · Zbl 1134.11306
[30] Chiaselotti, G., Sums of distinct elements in finite abelian groups, Boll. unione mat. ital., 7, 243-251, (1993) · Zbl 0822.11020
[31] J.A. Dias da Silva, Linear algebra and additive theory, in: M.B. Nathanson (Ed.), Unusual Applications of Number Theory, DIMACS Series Discrete Mathematics and Theoretical Computer Science, vol. 64, American Mathematical Society, RI, Providence, 2004, pp. 61-69. · Zbl 1099.11060
[32] Dias da Silva, J.A.; Godinho, H., Generalized derivatives and additive theory, Linear algebra appl., 342, 1-15, (2002) · Zbl 1026.11030
[33] Dias da Silva, J.A.; ould Hamidoune, Y., Cyclic spaces for Grassmann derivatives and additive theory, Bull. London math. soc., 26, 140-146, (1994) · Zbl 0819.11007
[34] Delorme, C.; Marquez, I.; Ordaz, O.; Ortuño, A., Existence conditions for barycentric sequences, Discrete math., 281, 163-172, (2004) · Zbl 1080.20020
[35] Delorme, C.; Ordaz, O.; Quiroz, D., Some remarks on Davenport constant, Discrete math., 237, 119-128, (2001) · Zbl 1003.20025
[36] Diderrich, G.T., On Kneser’s addition theorem in groups, Proc. amer. math. soc., 38, 443-451, (1973) · Zbl 0266.20041
[37] Diderrich, G.T., An addition theorem for abelian groups of order \(\mathit{pq}\), J. number theory, 7, 33-48, (1975) · Zbl 0295.10042
[38] G.T. Diderrich, H.B. Mann, Combinatorial problems in finite abelian groups, in: A Survey of Combinatorial Theory, North-Holland, Amsterdam, 1973, pp. 95-100.
[39] Dimitrov, V., On the strong Davenport constant of nonabelian finite \(p\)-groups, Math. balkica, 18, 131-140, (2004) · Zbl 1079.20037
[40] Y. Edel. C. Elsholtz, A. Geroldinger, S. Kubertin, L. Rackham, Zero-sum problems in finite abelian groups and affine caps, manuscript. · Zbl 1205.11028
[41] Eggleton, R.B.; Erdős, P., Two combinatorial problems in group theory, Acta arith., 21, 111-116, (1972) · Zbl 0248.20068
[42] Elledge, S.; Hurlbert, G.H., An application of graph pebbling to zero-sum sequences in abelian groups, Integers, 5, 1, 10, (2005), (Paper A17) · Zbl 1082.11013
[43] Elsholtz, C., Lower bounds for multidimensional zero sums, Combinatorica, 24, 351-358, (2004) · Zbl 1064.11018
[44] van Emde Boas, P., A combinatorial problem on finite abelian groups II, reports ZW-1969-007, (1969), Mathematical Centre Amsterdam · Zbl 0203.32703
[45] van Emde Boas, P.; Kruyswijk, D., A combinatorial problem on finite abelian groups, reports ZW-1967-009, (1967), Mathematical Centre Amsterdam · Zbl 0189.31703
[46] van Emde Boas, P.; Kruyswijk, D., A combinatorial problem on finite abelian groups III, reports ZW-1969-008, (1969), Mathematical Centre Amsterdam · Zbl 0245.20046
[47] Erdős, P.; Ginzburg, A.; Ziv, A., Theorem in the additive number theory, Bull. res. council Israel, 10, 41-43, (1961)
[48] Erdős, P.; Heilbronn, H., On the addition of residue classes modulo \(p\), Acta arith., 9, 149-159, (1964) · Zbl 0156.04801
[49] B.W. Finklea, T. Moore, V. Ponomarenko, Z.J. Turner, On block monoid atomic structure, manuscript.
[50] Flores, C.; Ordaz, O., On the erdős – ginzburg – ziv theorem, Discrete math., 152, 321-324, (1996) · Zbl 0857.05073
[51] M. Freeze, Lengths of factorizations in Dedekind domains, Ph.D. Thesis, University of North Carolina at Chapel Hill, 1999.
[52] Freeze, M.; Smith, W.W., Sumsets of zerofree sequences, Arab J. sci. eng. section C: theme issues, 26, 97-105, (2001) · Zbl 1271.11096
[53] G.A. Freiman, Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs, vol. 37, American Mathematical Society, Providence, RI, 1973. · Zbl 0271.10044
[54] G.A. Freiman, Structure theory of set addition, in: J.M. Deshouillers, B. Landreau, A.A. Yudin (Eds.), Structure Theory of Set Addition, vol. 258, Astérisque, 1999, pp. 1-33. · Zbl 0958.11008
[55] Z. Füredi, D.J. Kleitman, The minimal number of zero sums. in: Combinatorics, Paul Erdős is Eighty, J. Bolyai Mathematical Society, 1993, pp. 159-172.
[56] Gallardo, L.; Grekos, G., On Brakemeier’s variant of the erdős – ginzburg – ziv problem, Tatra mt. math. publ., 20, 91-98, (2000) · Zbl 0999.11016
[57] Gallardo, L.; Grekos, G.; Habsieger, L.; Hennecart, F.; Landreau, B.; Plagne, A., Restricted addition in \(\mathbb{Z} / n \mathbb{Z}\) and an application to the erdős – ginzburg – ziv problem, J. London math. soc., 65, 513-523, (2002) · Zbl 1014.05065
[58] Gallardo, L.; Grekos, G.; Pihko, J., On a variant of the erdős – ginzburg – ziv problem, Acta arith., 89, 331-336, (1999) · Zbl 0929.11009
[59] W. Gao, Subsequence sums in finite cyclic groups, manuscript.
[60] W. Gao, Some problems in additive group theory and number theory, Ph.D. Thesis, Sichuan University, Sichuan, PR China, 1994.
[61] Gao, W., Addition theorems for finite abelian groups, J. number theory, 53, 241-246, (1995) · Zbl 0836.11007
[62] Gao, W., A combinatorial problem on finite abelian groups, J. number theory, 58, 100-103, (1995) · Zbl 0892.11005
[63] Gao, W., An improvement of erdős – ginzburg – ziv theorem, Acta math. sin., 39, 514-523, (1996) · Zbl 0862.20018
[64] Gao, W., Two addition theorems on groups of prime order, J. number theory, 56, 211-213, (1996) · Zbl 0892.11004
[65] Gao, W., An addition theorem for finite cyclic groups, Discrete math., 163, 257-265, (1997) · Zbl 0924.11014
[66] Gao, W., Addition theorems and group rings, J. combin. theory ser. A, 77, 98-109, (1997) · Zbl 0880.20038
[67] Gao, W., On the number of zero sum subsequences, Discrete math., 163, 267-273, (1997) · Zbl 0924.11013
[68] Gao, W., On the number of subsequences with given sum, Discrete math., 195, 127-138, (1999) · Zbl 0979.20048
[69] Gao, W., On Davenport’s constant of finite abelian groups with rank three, Discrete math., 222, 111-124, (2000) · Zbl 0971.20032
[70] Gao, W., Two zero sum problems and multiple properties, J. number theory, 81, 254-265, (2000) · Zbl 0964.11019
[71] Gao, W., Zero sums in finite cyclic groups, Integers, 0, 9, (2000), (Paper A14)
[72] Gao, W., On zero sum subsequences of restricted size III, Ars. combin., 61, 65-72, (2001) · Zbl 1101.11311
[73] Gao, W., On zero sum subsequences of restricted size II, Discrete math., 271, 51-59, (2003) · Zbl 1089.11012
[74] W. Gao, A. Geroldinger, F. Halter-Koch, Group algebras of finite abelian groups and their applications to combinatorial problems, Rocky Mt. J. Math., to appear. · Zbl 1200.05254
[75] W. Gao, A. Geroldinger, On the number of subsequences with given sum of sequences over finite abelian \(p\)-groups, Rocky Mt. J. Math., to appear. · Zbl 1141.11013
[76] Gao, W.; Geroldinger, A., On the structure of zerofree sequences, Combinatorica, 18, 519-527, (1998) · Zbl 0968.11016
[77] Gao, W.; Geroldinger, A., On long minimal zero sequences in finite abelian groups, Period math. hungar., 38, 179-211, (1999) · Zbl 0980.11014
[78] Gao, W.; Geroldinger, A., On the order of elements in long minimal zero-sum sequences, Period math. hung., 44, 63-73, (2002) · Zbl 1017.20043
[79] Gao, W.; Geroldinger, A., On zero-sum sequences in \(\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}\), Integers, 3, 45, (2003), (Paper A08)
[80] Gao, W.; Geroldinger, A., Zero-sum problems and coverings by proper cosets, European J. combin., 24, 531-549, (2003) · Zbl 1026.20032
[81] Gao, W.; Geroldinger, A., On a property of minimal zero-sum sequences and restricted sumsets, Bull. London math. soc., 37, 321-334, (2005) · Zbl 1122.11012
[82] W. Gao, Q.H. Hou, W.A. Schmid, R. Thangadurai, On short zero-sum subsequences II, manuscript. · Zbl 1201.11030
[83] Gao, W.; Jin, X., Weighted sums in finite cyclic groups, Discrete math., 283, 243-247, (2004) · Zbl 1052.11014
[84] W. Gao, I. Leader, Sums and \(k\)-sums in abelian groups of order \(k\), J. Number Theory 120 (2006) 26-32. · Zbl 1192.11010
[85] Gao, W.; ould Hamidoune, Y., Zero sums in abelian groups, Combin. probab. comput., 7, 261-263, (1998) · Zbl 1076.11501
[86] Gao, W.; ould Hamidoune, Y., On additive bases, Acta arith., 88, 233-237, (1999) · Zbl 0935.11004
[87] Gao, W.; ould Hamidoune, Y.; Llado, A.; Serra, O., Covering a finite abelian group by subset sums, Combinatorica, 23, 599-611, (2003) · Zbl 1049.11022
[88] Gao, W.; Panigrahi, A.; Thangadurai, R., On the structure of \(p\)-zero-sum free sequences and its application to a variant of erdős – ginzburg – ziv theorem, Proc. Indian acad. sci. math. sci., 115, 67-77, (2005) · Zbl 1113.11012
[89] Gao, W.; Ruzsa, I.; Thangadurai, R., Olson’s constant for the group \(\mathbb{Z}_p \oplus \mathbb{Z}_p\), J. combin. theory ser. A, 107, 49-67, (2004) · Zbl 1107.11014
[90] W. Gao, R. Thangadurai, On zero-sum sequences of prescribed length, Aequationes Math., to appear. · Zbl 1111.11014
[91] Gao, W.; Thangadurai, R., On the structure of sequences with forbidden zero-sum subsequences, Colloq. math., 98, 213-222, (2003) · Zbl 1057.11011
[92] Gao, W.; Thangadurai, R., A variant of kemnitz conjecture, J. combin. theory ser. A, 107, 69-86, (2004) · Zbl 1110.11008
[93] W. Gao, R. Thangadurai, J. Zhuang, Addition theorems on the cyclic groups \(\mathbb{Z}_{p^n}\), manuscript. · Zbl 1152.20044
[94] Gao, W.; Zhuang, J., Sequences not containing long zero-sum subsequences, European J. combin., 27, 777-787, (2006) · Zbl 1091.11008
[95] Geroldinger, A., On a conjecture of kleitman and Lemke, J. number theory, 44, 60-65, (1993) · Zbl 0781.20017
[96] A. Geroldinger, F. Halter-Koch, Non-unique factorizations, Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, London, Boca Raton, FL, 2006. · Zbl 1113.11002
[97] Geroldinger, A.; ould Hamidoune, Y., Zero-sumfree sequences in cyclic groups and some arithmetical application, J. théoret. nombres bordx, 14, 221-239, (2002) · Zbl 1018.11011
[98] Geroldinger, A.; Schneider, R., On Davenport’s constant, J. combin. theory ser. A, 61, 147-152, (1992) · Zbl 0759.20008
[99] Geroldinger, A.; Schneider, R., The cross number of finite abelian groups II, European J. combin., 15, 399-405, (1994) · Zbl 0833.20061
[100] Geroldinger, A.; Schneider, R., The cross number of finite abelian groups III, Discrete math., 150, 123-130, (1996) · Zbl 0848.20048
[101] Geroldinger, A.; Schneider, R., On minimal zero sequences with large cross number, Ars. combin., 46, 297-303, (1997) · Zbl 0933.05150
[102] D.J. Grynkiewicz, On the number of \(m\)-term zero-sum subsequences, Acta. Arith., to appear. · Zbl 1111.11010
[103] D.J. Grynkiewicz, A step beyond Kemperman’s structure theorem, manuscript. · Zbl 1213.11179
[104] D.J. Grynkiewicz, A weighted version of the Erdős-Ginzburg-Ziv theorem. Combinatorica, to appear. · Zbl 1121.11018
[105] Grynkiewicz, D.J., On four colored sets with non-decreasing diameter and the erdős – ginzburg – ziv theorem, J. combin. theory ser. A, 100, 44-60, (2002) · Zbl 1027.11016
[106] Grynkiewicz, D.J., On a conjecture of hamidoune for subsequence sums, Integers, 5, 2, 11, (2005), (Paper A07) · Zbl 1098.11019
[107] Grynkiewicz, D.J., On a partition analog of the cauchy – davenport theorem, Acta math. hungar., 107, 161-174, (2005) · Zbl 1102.11016
[108] Grynkiewicz, D.J., On an extension of the erdős – ginzburg – ziv theorem to hypergraphs, European J. combin., 26, 1154-1176, (2005) · Zbl 1107.11015
[109] Grynkiewicz, D.J., Quasi-periodic decompositions and the kemperman structure theorem, European J. combin., 26, 559-575, (2005) · Zbl 1116.11081
[110] Halter-Koch, F., A generalization of Davenport’s constant and its arithmetical applications, Colloq. math., 63, 203-210, (1992) · Zbl 0760.11031
[111] ould Hamidoune, Y., On weighted sequence sums, Combin. probab. comput., 4, 363-367, (1995) · Zbl 0848.20049
[112] ould Hamidoune, Y., An isoperimetric method in additive theory, J. algebra, 179, 622-630, (1996) · Zbl 0842.20029
[113] ould Hamidoune, Y., On weighted sums in abelian groups, Discrete math., 162, 127-132, (1996) · Zbl 0872.11016
[114] ould Hamidoune, Y., Subsequence sums, Combin. probab. comput., 12, 413-425, (2003) · Zbl 1049.11024
[115] ould Hamidoune, Y.; Lladó, A.S.; Serra, O., On sets with a small subset sum, Combin. probab. comput., 8, 461-466, (1999) · Zbl 1109.11323
[116] ould Hamidoune, Y.; Ordaz, O.; Ortuño, A., On a combinatorial theorem of Erdős, Ginzburg and Ziv, Combin. probab. comput., 7, 403-412, (1998) · Zbl 1057.05507
[117] ould Hamidoune, Y.; Quiroz, D., On subsequence weighted products, Combin. probab. comput., 14, 485-489, (2005) · Zbl 1095.20013
[118] ould Hamidoune, Y.; Zémor, G., On zero-free subset sums, Acta arith., 78, 143-152, (1996) · Zbl 0863.11016
[119] Harborth, H., Ein extremalproblem für gitterpunkte, J. reine. angew math., 262, 356-360, (1973) · Zbl 0268.05008
[120] Harcos, G.; Ruzsa, I.Z., A problem on zero subsums in abelian groups, Period math. hungar., 35, 31-34, (1997) · Zbl 0923.11039
[121] Hennecart, F., La fonction de brakemeier dans le problème d’erdős – ginzburg – ziv, Acta arith., 117, 35-50, (2005) · Zbl 1063.11008
[122] Hennecart, F., Restricted addition and some developments of the erdős – ginzburg – ziv theorem, Bull. London math. soc., 37, 481-490, (2005) · Zbl 1070.05078
[123] G.H. Hurlbert, Recent progress in graph pebbling. Graph Theory Notes of New York, to appear. · Zbl 1277.05157
[124] Kainrath, F., On local half-factorial orders, (), 316-324 · Zbl 1069.11047
[125] Kemnitz, A., On a lattice point problem, Ars. combin., 16-B, 151-160, (1983) · Zbl 0539.05008
[126] Kisin, M., The number of zero sums modulo m in a sequence of length n, Mathematika, 41, 149-163, (1994) · Zbl 0804.11019
[127] Kleitman, D.; Lemke, P., An addition theorem on the integers modulo n, J. number theory, 31, 335-345, (1989) · Zbl 0672.10038
[128] I. Koutis, Dimensionality restrictions on sums over \(\mathbb{Z}_p^d\), manuscript.
[129] Krause, U., A characterization of algebraic number fields with cyclic class group of prime power order, Math. Z., 186, 143-148, (1984) · Zbl 0522.12006
[130] Krause, U.; Zahlten, C., Arithmetic in Krull monoids and the cross number of divisor class groups, Mitt. math. ges. hamb., 12, 681-696, (1991) · Zbl 0756.20010
[131] G. Lettl, W.A. Schmid, Minimal zero-sum sequences in \(C_n \oplus C_n\), European J. Combin., to appear. · Zbl 1120.11013
[132] G. Lettl, Z.-W. Sun, On covers of abelian groups by cosets, manuscript. · Zbl 1194.20024
[133] Lev, V.F., Restricted set addition in abelian groups: results and conjectures, J. théoret. nombres bordx., 17, 181-193, (2005) · Zbl 1162.11318
[134] E. Lipkin, Subset sums of sets of residues. in: Structure Theory of Set Addition, vol. 258, Astérisque, 1999, pp. 187-192. · Zbl 0946.11005
[135] Lungo, A.D., Reconstructing permutation matrices from diagonal sums, Theoret. comput. sci., 281, 235-249, (2002) · Zbl 0996.68223
[136] Mann, H.B., Additive group theory — a progress report, Bull. amer. math. soc., 79, 1069-1075, (1973) · Zbl 0278.20031
[137] Mann, H.B., Addition theorems: the addition theorems of group theory and number theory, (1976), R.E. Krieger New York
[138] Mann, H.B.; Olson, J.E., Sums of sets in the elementary abelian group of type \((p, p)\), J. combin. theory ser. A, 2, 275-284, (1967) · Zbl 0168.01501
[139] Mann, H.B.; Wou, Y.F., An addition theorem for the elementary abelian group of type \((p, p)\), Monatsh math., 102, 273-308, (1986) · Zbl 0597.10049
[140] Mazur, M., A note on the growth of Davenport’s constant, Manuscr. math., 74, 229-235, (1992) · Zbl 0759.20009
[141] Meshulam, R., An uncertainty inequality and zero subsums, Discrete math., 84, 197-200, (1990) · Zbl 0717.11017
[142] Nathanson, M.B., Additive number theory: inverse problems and the geometry of sumsets, (1996), Springer Berlin · Zbl 0859.11003
[143] Olson, J.E., A combinatorial problem on finite abelian groups I, J. number theory, 1, 8-10, (1969) · Zbl 0169.02003
[144] Olson, J.E., A combinatorial problem on finite abelian groups II, J. number theory, 1, 195-199, (1969) · Zbl 0167.28004
[145] Olson, J.E., Sums of sets of group elements, Acta arith., 28, 147-156, (1975) · Zbl 0318.10035
[146] Olson, J.E., On a combinatorial problem of Erdős. Ginzburg and Ziv, J. number theory, 8, 52-57, (1976) · Zbl 0333.05009
[147] Olson, J.E., On the sum of two sets in a group, J. number theory, 18, 110-120, (1984) · Zbl 0524.10043
[148] Olson, J.E., On the symmetric difference of two sets in a group, European J. combin., 7, 43-54, (1986) · Zbl 0597.05012
[149] Olson, J.E., A problem of Erdős on abelian groups, Combinatorica, 7, 285-289, (1987) · Zbl 0643.20031
[150] Olson, J.E.; White, E.T., Sums from a sequence of group elements, (), 215-222
[151] Ordaz, O.; Quiroz, D., On zero-free sets, Divulg. mat., 14, 1-10, (2006) · Zbl 1217.20033
[152] Peng, C., Addition theorems in elementary abelian groups I, J. number theory, 27, 46-57, (1987)
[153] Peng, C., Addition theorems in elementary abelian groups II, J. number theory, 27, 58-62, (1987)
[154] Ponomarenko, V., Minimal zero sequences of finite cyclic groups, Integers, 4, 6, (2004), (Paper A24) · Zbl 1083.11015
[155] C. Reiher, On Kemnitz’ conjecture concerning lattice points in the plane, J. Ramanujan, to appear. · Zbl 1126.11011
[156] Savchev, S.; Chen, F., Kemnitz’ conjecture revisited, Discrete math., 297, 196-201, (2005) · Zbl 1136.11303
[157] Schmid, W.A., On zero-sum subsequences in finite abelian groups, Integers, 1, 8, (2001), (Paper A01) · Zbl 0980.20046
[158] Schmid, W.A., Half-factorial sets in finite abelian groups: a survey, Grazer math. ber., 348, 41-64, (2005) · Zbl 1116.20033
[159] W.A. Schmid, J.J. Zhuang, On short zero-sum subsequences over \(p\)-groups. Ars. Combin., to appear. · Zbl 1249.11037
[160] Skałba, M., The relative Davenport’s constant of the group \(\mathbb{Z}_n \times \mathbb{Z}_n\), Grazer math. ber., 318, 167-168, (1992)
[161] Skałba, M., On numbers with a unique representation by a binary quadratic form, Acta arith., 64, 59-68, (1993) · Zbl 0788.11015
[162] Skałba, M., On the relative Davenport constant, European J. combin., 19, 221-225, (1998) · Zbl 0945.20012
[163] Subocz, J., Some values of Olson’s constant, Divulg. mat., 8, 121-128, (2000) · Zbl 0973.11025
[164] Sun, Z.-W., Unification of zero-sum problems, subset sums and covers of \(\mathbb{Z}\), Electron. res. announc. amer. math. soc., 9, 51-60, (2003) · Zbl 1062.11015
[165] Sury, B.; Thangadurai, R., Gao’s conjecture on zero-sum sequences, Proc. Indian acad. sci. math. sci., 112, 399-414, (2002) · Zbl 1037.11010
[166] Szemerédi, E., On a conjecture of Erdős and Heilbronn, Acta arith., 17, 227-229, (1970) · Zbl 0222.10055
[167] Thangadurai, R., Interplay between four conjectures on certain zero-sum problems, Exposition math., 20, 215-228, (2002) · Zbl 1109.11307
[168] Thangadurai, R., Non-canonical extensions of erdős – ginzburg – ziv theorem, Integers, 2, 14, (2002), (Paper A08) · Zbl 1043.11018
[169] V.H. Vu, Olson’s theorem for cyclic groups, manuscript.
[170] Yuster, T., Bounds for counter-examples to addition theorems in solvable groups, Arch. math., 51, 223-231, (1988) · Zbl 0659.20020
[171] Yuster, T.; Peterson, B., A generalization of an addition theorem for solvable groups, Canad. J. math., 36, 529-536, (1984) · Zbl 0552.10034
[172] Zhuang, J.; Gao, W., Erdős – ginzburg – ziv theorem for dihedral groups of large prime index, European J. combin., 26, 1053-1059, (2005) · Zbl 1077.20044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.