zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Opial-type inequalities for differential operators. (English) Zbl 1122.26018
The paper establishes some generalized weighted Opial-type inequalities, including both the continuous and discrete versions. Applications of the continuous version on fractional derivatives are also given. The original Opial inequality $$ \int_0^h \vert f(x)\vert \left\vert \frac d{dx}f(x)\right\vert \,dx \le \frac h 4 \int_0^h \left\vert \frac d{dx}f(x)\right\vert ^2\, dx $$ where $f(0)=f(h)=0$, has been generalized to lots of situations and settings over decades. The paper gives some further generalizations to some recent results in the field. The main result is the following generalized weighted Opial-type inequality, $$ \left\vert \int_a^x u(t)\vert h(t)\vert ^q \prod_{i=1}^N \vert y_i(t)\vert ^{p_i}\, dt \right\vert \le A(x) \left\vert \int_a^x v(t)\vert h(t)\vert ^r\, dt \right\vert ^{(p+q)/r},$$ where $u,v$ are continuous positive weight functions on some closed interval and $a$ is a fixed point in the interval. The functions $y_i$ and $h$ satisfy $$ \vert y_i(t)\vert \le \left\vert \int_a^t K_i(t,s) \vert h(s)\vert\, ds \right\vert , $$ where $\{K_i\}$ are positive kernels. The function $A(x)$ is an integral function involving the weight functions, the kernels, and the indexes $p_i, q$ and $r$. Some corollaries and the discrete analogues are then provided. Finally the paper discusses applications of the main result on the Riemann-Liouville fractional derivative operators, and corresponding inequalities are established.

26D15Inequalities for sums, series and integrals of real functions
26D10Inequalities involving derivatives, differential and integral operators
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] Anastassiou, G. A.: Opial type inequalities for linear differential operators. Math. inequal. Appl. 1, No. 2, 193-200 (1998) · Zbl 0906.26010
[2] Anastassiou, G. A.; Pečarić, J.: General weighted Opial inequalities for linear differential operators. J. math. Anal. appl. 239, 402-418 (1999) · Zbl 0939.26006
[3] Agarwal, R. P.; Pang, P. Y. H.: Remarks on the generalization of Opial’s inequality. J. math. Anal. appl. 190, 559-577 (1995) · Zbl 0831.26008
[4] Agarwal, R. P.; Pang, P. Y. H.: Opial inequalities with applications in differential and difference equations. (1995) · Zbl 0821.26013
[5] Agarwal, R. P.; Pang, P. Y. H.: Opial-type inequalities involving higher order derivatives. J. math. Anal. appl. 189, 85-103 (1995) · Zbl 0822.26011
[6] Agarwal, R. P.; Thandapani, E.: On some new integrodifferential inequalities. Analete stiintifice ale universitatic, ”al. I. cuza” din iasi tomal XXVIII, S. Ia, 123-126 (1982)
[7] Alzer, H.: On some inequalities of Opial-type. Arch. math. 63, 431-436 (1994) · Zbl 0849.26007
[8] Alzer, H.: Note on a discrete Opial-type inequality. Arch. math. 65, 267-270 (1995) · Zbl 0839.26012
[9] Cheung, W. S.: Generalizations of Opial-type inequalities in two variables. Tamkang J. Math. 22, No. 1, 43-50 (1991) · Zbl 0717.26006
[10] Cheung, W. S.: On Opial-type inequalities in two variables. Aequationes math. 38, 236-244 (1989) · Zbl 0684.26006
[11] Cheung, W. S.: Opial-type inequalities with m functions in n variables. Mathematika 39, 319-326 (1992) · Zbl 0762.26012
[12] Cheung, W. S.: Some generalized Opial-type inequalities. J. math. Anal. appl. 162, No. 2, 317-321 (1991) · Zbl 0761.26012
[13] Cheung, W. S.: Some new Opial-type inequalities. Mathematika 37, 136-142 (1990) · Zbl 0687.26004
[14] Das, K. M.: An inequality similar to Opial’s inequality. Proc. amer. Math. soc. 22, 258-261 (1969) · Zbl 0185.12304
[15] Kreider, D.; Kuller, R.; Ostberg, D.; Perkins, F.: An introduction to linear analysis. (1966) · Zbl 0137.03002
[16] Koliha, J. J.; Pečarić, J.: Weighted Opial inequalities. Tamkang J. Math. 33, No. 1, 93-102 (2002) · Zbl 1001.26010
[17] Opial, Z.: Sur une inégalité. Ann. polon. Math. 8, 29-32 (1960) · Zbl 0089.27403
[18] Pachpatte, B. G.: On Opial-type inequalities. J. math. Anal. appl. 120, 547-556 (1986) · Zbl 0608.26009
[19] Pachpatte, B. G.: On Opial-type inequalities in two independent variables. Proc. roy. Soc. Edinburgh 100, 263-270 (1985) · Zbl 0577.26009
[20] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[21] Willet, D.: The existence--uniqueness theorem for an nth order linear ordinary differential equation. Amer. math. Monthly 75, 174-178 (1968)
[22] Yang, G. S.: On a certain result of Z. Opial. Proc. Japan acad. 42, 78-83 (1966) · Zbl 0151.05202