zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics in a ratio-dependent predator--prey model with predator harvesting. (English) Zbl 1122.34035
The authors consider the following ratio-dependent predator-prey model with nonzero constant predator harvesting $$ \align \dot x(t)=& x(t)(1-x(t))-\frac{ax(t)y(t)}{y(t)+x(t)},\\ \dot y(t)=& y(t)\left(-d+\frac{bx(t)}{y(t)+x(t)}\right)-h, \endalign$$ where all parameters $a,b,d$ and $h$ are positive constants; $h$ represents the rate of predator harvesting. It is shown that the model has at most two equilibria in the first quadrant and can exhibit numerous kinds of bifurcation phenomena, including the bifurcation of cusp type of codimension 2 (i.e., Bogdanov-Takens bifurcation), the subcritical and supercritical Hopf bifurcation. These results show far richer dynamics compared to the model without harvesting and different dynamics compared to the model with nonzero constant rate of prey harvesting developed by {\it D. Xiao} and {\it L. S. Jennings} [SIAM Appl. Math. 65, 737--753 (2005; Zbl 1094.34024)]. Biologically, it is shown that nonzero constant rate of predator harvesting can prevent mutual extinction as a possible outcome of the predator-prey interaction.

MSC:
34C60Qualitative investigation and simulation of models (ODE)
92D25Population dynamics (general)
34C23Bifurcation (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Abrams, P. A.; Ginzburg, L. R.: The nature of predation: prey dependent, ratio-dependent or neither?. Trends in ecology and evolution 15, 337-341 (2000)
[2] Akcakaya, H. R.; Arditi, R.; Ginzburg, L. R.: Ratio-dependent prediction: an abstraction that works. Ecology 79, 995-1004 (1995)
[3] Arditi, R.; Berryman, A. A.: The biological paradox. Trends in ecology and evolution 6, 32 (1991)
[4] Arditi, R.; Ginzburg, L. R.: Coupling in predator -- prey dynamics: ratio-dependence. J. theoret. Biol. 139, 311-326 (1989)
[5] Arditi, R.; Ginzburg, L. R.; Akcakaya, H. R.: Variation in plankton densities among lakes: A case for ratio-dependent models. Amer. naturalist 138, 1287-1296 (1991)
[6] Andronov, A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. G.: Theory of bifurcations of dynamical systems on a plane. (1971)
[7] Berezovskaya, F.; Karev, G.; Arditi, R.: Parametric analysis of the ratio-dependent predator -- prey model. J. math. Biol. 43, 221-246 (2001) · Zbl 0995.92043
[8] Brauer, F.; Soudack, A. C.: Stability regions and transition phenomena for harvested predator -- prey systems. J. math. Biol. 7, 319-337 (1979) · Zbl 0397.92019
[9] Brauer, F.; Soudack, A. C.: Stability regions in predator -- prey systems with constant rate prey harvesting. J. math. Biol. 8, 55-71 (1979) · Zbl 0406.92020
[10] Brauer, F.; Soudack, A. C.: Coexistence properties of some predator -- prey systems under constant rate harvesting and stocking. J. math. Biol. 12, 101-114 (1981) · Zbl 0482.92015
[11] Chow, S. -N.; Hale, J. K.: Methods of bifurcation theory. (1982) · Zbl 0487.47039
[12] Chow, S. -N.; Li, C. Z.; Wang, D.: Normal forms and bifurcation of planar vector fields. (1994) · Zbl 0804.34041
[13] Clark, C. W.: Mathematical bioeconomics, the optimal management of renewable resources. (1990) · Zbl 0712.90018
[14] Cosner, C.; Deangelis, D. L.; Ault, J. S.; Olson, D. B.: Effects of spatial grouping on the functional response of predators. Theor. pop. Biol. 56, 65-75 (1999) · Zbl 0928.92031
[15] Gutierrez, A. P.: The physiological basis of ratio-dependent predator -- prey theory: A metabolic pool model of Nicholson’s blowflies as an example. Ecology 73, 1552-1563 (1992)
[16] Hsu, S. B.; Hwang, T. W.; Kuang, Y.: Global analysis of the michaelis -- menten type ratio-dependent predator -- prey system. J. math. Biol. 42, 489-506 (2001) · Zbl 0984.92035
[17] Jost, C.; Arino, O.; Arditi, R.: About deterministic extinction in ratio-dependent predator -- prey models. Bull. math. Biol. 61, 19-32 (1999) · Zbl 1323.92173
[18] Kuang, Y.: Rich dynamics of gause-type ratio-dependent predator -- prey system. Fields inst. Commun. 21, 325-339 (1999) · Zbl 0920.92032
[19] Kuang, Y.; Beretta, E.: Global qualitative analysis of a ratio-dependent predator -- prey system. J. math. Biol. 36, 389-406 (1998) · Zbl 0895.92032
[20] Perko, L.: Differential equations and dynamical systems. (1996) · Zbl 0854.34001
[21] Xiao, D.; Ruan, S.: Bogdanov -- Takens bifurcations in predator -- prey systems with constant rate harvesting. Fields inst. Commun. 21, 493-506 (1999) · Zbl 0917.34029
[22] Xiao, D.; Ruan, S.: Global dynamics of a ratio-dependent predator -- prey system. J. math. Biol. 43, 268-290 (2001) · Zbl 1007.34031
[23] Xiao, D.; Jennings, L.: Bifurcations of a ratio-dependent predator -- prey system with constant rate harvesting. SIAM appl. Math. 65, 737-753 (2005) · Zbl 1094.34024
[24] Yodzis, P.: Predator -- prey theory and management of multispecies fisheries. Ecological applications 4, 51-58 (2004)
[25] Zhang, Z.; Ding, T.; Huang, W.; Dong, Z.: Qualitative theory of differential equations. Transl. math. Monogr. 101 (1992) · Zbl 0779.34001