## Continuous dependence of the entropy solution of general parabolic equation.(English)Zbl 1122.35012

Summary: We consider the general parabolic equation:
$u_t-\Delta b(u)+\text{div\,}F(u)=f\text{ in }Q=]0,T[\times \mathbb R^N,$
with $$u_0\in L^\infty(\mathbb R^N)$$, for a.e $$t\in ]0,T[$$, $$f(t)\in L^\infty(\mathbb R^N)$$ and $$\int^T_0 \|f(t)\|_{L^\infty(\mathbb R^N)}\,dt<\infty$$.
We prove the continuous dependence of the entropy solution with respect to $$F$$, $$b$$, $$f$$ and the initial data $$u_0$$ of the associated Cauchy problem.
We start by recalling the definition of weak solution and entropy solution. By applying an abstract result (Theorem 2.3), we get the continuous dependence of the entropy solution. The contribution of the present work consists of considering the equation in the whole space $$\mathbb R^n$$ instead of a bounded domain and considering a bounded data instead of integrable data.

### MSC:

 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs 35K65 Degenerate parabolic equations 35K15 Initial value problems for second-order parabolic equations

bounded data
Full Text:

### References:

 [1] Andreianov, B. P.; Bénilan, Ph.; Kruskhov, S. N.$$, L^1$$ theory of scalar conservation law with continuous flux function, J. Funct. Anal., 171, 15-33, (2000) · Zbl 0944.35048 [2] Alt, H. W.; Luckhauss, S., Quasi-linear elliptic-parabolic differential equations, Math.Z., 183, 311-341, (1983) · Zbl 0497.35049 [3] Bénilan, Ph.; Crandall, M. G.; Pazy, A., Evolution Equation governed by Accretive operators [4] Bénilan, Ph.; Gariepy, B., Strong solution $$L^1$$ of degenerate parabolic equation, J. of Diff. Equat., 119, 473-502, (1995) · Zbl 0828.35050 [5] Bénilan, Ph.; Kruskhov, S. N., Quasilinear first order equations with continuous non linearities, Russian Acad. Sci. Dokl. Math., 50, 3, 391-396, (1995) · Zbl 0880.35027 [6] Bénilan, Ph.; Touré, H., Sur l’équation générale $$u_t=φ (u)_ {xx}-ψ (u)_x +v,$$ C.R. Acad. Sc. Paris, série 1, 299, 919-922, (1984) · Zbl 0586.35016 [7] Bénilan, Ph.; Touré, H., Sur l’équation générale $$u_t =a(.,u, φ (.,u)_x)_x$$ dans $$L^1$$ I. etude du problème stationnaire, in evolution equations, Lecture Notes Pure and Appl. Math., 168, (1995) · Zbl 0820.34011 [8] Bénilan, Ph.; Touré, H., Sur l’équation générale $$u_t =a(.,u, φ (.,u)_x)_x$$ dans $$L^1$$ II. le problème d’évolution, Ann. Inst. Henri Poincaré, 12, 6, 727-761, (1995) · Zbl 0839.35068 [9] Bénilan, Ph.; Wittbold, P., On mild and weak solution of elliptic-parabolic problems, Adv. in Diff. Equat., 1, 6, 1053-1072, (1996) · Zbl 0858.35064 [10] Carrillo, J., On the uniquness of the solution of the evolution DAM problem, Nonlinear Analysis, 22, 5, 573-607, (1999) · Zbl 0810.76086 [11] Carrillo, J., Entropy solutions for nonlinear degenerate problems, Arch. Ratio. Mech. Anal., 147, 269-361, (1999) · Zbl 0935.35056 [12] Carrillo, J., Unicité des solutions du type kruskhov pour des problèmes elliptiques avec des termes de transport non linéaires, C. R. Acad. Sc. Paris, Série I, 33, 5, (1986) · Zbl 0623.35030 [13] Carrillo, J.; Wittbold, P., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Diff. Equation, 156, 93-121, (1999) · Zbl 0932.35129 [14] Diaz, J. I.; Thelin, F., On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM. J. Math. Anal., 25, 1085-1111, (1994) · Zbl 0808.35066 [15] Gagneux, G.; Tort, M. M., Unicité des solutions faibles d’équations de diffusion convection, C. R. Acad. SC. Paris, Série I, 318, (1994) · Zbl 0826.35057 [16] Kruskhov, S. N.; Panov, E. Yu., Conservative quasilinear first order law in the class of locally sommable functins, Dokl. Akad. Nauk. S.S.S.R., 220, 1, 233-26, (1985) [17] Kruskhov, S. N.; Panov, E. Yu., Conservative quasilinear first order laws with an infinite domain of dependence on the initial data, Soviet. Math. Dokl., 42, 2, 316-321, (1991) · Zbl 0789.35039 [18] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs, 23, (1968) · Zbl 0174.15403 [19] Maliki, M.; Touré, H., Solution généralisée locale d’une équation parabolique quasi linéaire dégénérée du second ordre, Ann. Fac. Sci. Toulouse, VII, 1, 113-133, (1998) · Zbl 0914.35068 [20] Maliki, M.; Touré, H., Dépendence continue de solutions généralisées locales, Ann. Fac. Sci. Toulouse, X, 4, 701-711, (2001) · Zbl 1029.35027 [21] Maliki, M.; Touré, H., Uniqueness entropy solutions for nonlinear degenerate parabolic problem, Journal of Evolution equation, 3, 4, 603-622, (2003) · Zbl 1052.35106 [22] Yin, J., On the uniqueness and stability of BV solutions for nonlinear diffusion equations, Comm. Part. Diff. Equat., 15, 12, 1671-1683, (1990) · Zbl 0726.35063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.