×

zbMATH — the first resource for mathematics

The Cauchy problem for the Gross–Pitaevskii equation. (English) Zbl 1122.35133
The author considers the initial-value problem for the Gross-Pitaevskii equation \(iu{_ {t}}+\Delta u=(| u| {^{2}}-1)u,\) where \(x\in{\mathbb R}{^{d}}\) with \(d=2,3.\) Using some Strichartz estimates it is shown that the initial-value problem is globally well posed on the space \(\{u\in H_{\text{loc}}^{1}({\mathbb {R}}{^{d}}): \nabla u\in L{^{2}}({\mathbb R}{^{d}}),\;| u| {^{2}}-1\in L{^{2}}({\mathbb {R}}{^{d}})\}.\)

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
37L50 Noncompact semigroups, dispersive equations, perturbations of infinite-dimensional dissipative dynamical systems
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Béthuel, F.; Orlandi, G.; Smets, D., Vortex rings for the gross – pitaevskii equation, J. eur. math. soc., 6, 17-94, (2004) · Zbl 1091.35085
[2] Béthuel, F.; Saut, J.C., Travelling waves for the gross – pitaevskii equation I, Ann. inst. H. Poincaré phys. théor., 70, 147-238, (1999) · Zbl 0933.35177
[3] Brezis, H.; Gallouët, T., Nonlinear Schrödinger evolution equations, Nonlinear anal., 4, 677-681, (1980) · Zbl 0451.35023
[4] Cazenave, T., Semilinear Schrödinger equations, Courant lecture notes in math., vol. 10, (2003), New York University, American Mathematical Society Providence, RI · Zbl 1055.35003
[5] Frisch, T.; Pomeau, Y.; Rica, S., Transition to dissipation in a model of superflow, Phys. rev. lett., 69, 1644-1647, (1992)
[6] Gallo, C., Schrödinger group on zhidkov spaces, Adv. differential equations, 9, 509-538, (2004) · Zbl 1103.35093
[7] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations, J. funct. anal., 32, 1-71, (1979) · Zbl 0396.35029
[8] Ginibre, J.; Velo, G., The global Cauchy problem for the nonlinear Schrödinger equation, Ann. inst. H. Poincaré anal. non linéaire, 2, 309-327, (1985) · Zbl 0586.35042
[9] O. Goubet, Two remarks on solutions of Gross-Pitaevskii equations on Zhidkov spaces, Preprint, 2005 · Zbl 1128.35096
[10] Gravejat, P., A non-existence result for supersonic travelling waves in the gross – pitaevskii equation, Comm. math. phys., 243, 93-103, (2003) · Zbl 1044.35087
[11] Gravejat, P., Decay of travelling waves in the gross – pitaevskii equation, Ann. inst. H. Poincaré anal. non linéaire, 21, 591-637, (2004) · Zbl 1057.35060
[12] Gravejat, P., Limit at infinity and non-existence result for sonic travelling waves in the gross – pitaevskii equation, Differential integral equations, 17, 1213-1232, (2004) · Zbl 1150.35301
[13] Gross, E.P., J. math. phys., 4, 195, (1963)
[14] Hörmander, L., The analysis of linear partial differential operators, vol. 1, (1983), Springer-Verlag
[15] Kato, T., On nonlinear Schrödinger equations, Ann. inst. H. Poincaré phys. théor., 46, 113-129, (1987) · Zbl 0632.35038
[16] Keel, M.; Tao, T., Endpoint Strichartz estimates, Amer. J. math., 120, 955-980, (1998) · Zbl 0922.35028
[17] Nore, C.; Abid, M.; Brachet, M., Decaying Kolmogorov turbulence in a model of superflow, Phys. fluids, 9, 2644-2669, (1997) · Zbl 1185.76669
[18] Pitaevskii, L.P., Sov. phys. JETP, 13, 451, (1961)
[19] Sulem, C.; Sulem, P.L., The nonlinear Schrödinger equation. self-focusing and wave collapse, Appl. math. sci., vol. 139, (1999), Springer-Verlag · Zbl 0928.35157
[20] P.E. Zhidkov, The Cauchy problem for a nonlinear Schrödinger equation, Dubna, 1987
[21] Zhidkov, P.E., Korteweg – de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture notes in math., vol. 1756, (2001), Springer-Verlag · Zbl 0987.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.