zbMATH — the first resource for mathematics

A note on two-dimensional transport with bounded divergence. (English) Zbl 1122.35143
The authors prove uniqueness for two dimensional transport across a noncharacteristic curve, under hypothesis that the vector field is autonomous, bounded, and with bounded divergence. They study also the Cauchy problem for the transport equation in \(\mathbb R_t\times \mathbb R_x^2\), \[ \partial_tu(t,x)+b(x)\cdot \nabla_xu(t,x)=0, \qquad u(0,\cdot )=u_0. \] The uniqueness for the Cauchy problem in \(\mathbb R_t\times \mathbb R_x^2\) is obtained under a special condition, that is, the inequality \(b(y)\cdot \xi \geq \alpha \), where \(b\) is the vector field, \(\xi \in \mathbb S^1\), \(\alpha >0\), \(\varepsilon >0\), \(y\in B_{\varepsilon }(x)\).

35Q72 Other PDE from mechanics (MSC2000)
35R05 PDEs with low regular coefficients and/or low regular data
35F10 Initial value problems for linear first-order PDEs
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI
[1] DOI: 10.2307/1971145 · Zbl 0394.28012
[2] DOI: 10.1007/s00222-004-0367-2 · Zbl 1075.35087
[3] Ambrosio L., Ann. Fac. Sci. Toulouse Math. Ser. 6 14 pp 527– (2005) · Zbl 1091.35007
[4] Bouchut F., Diff. Integral Eq. 14 pp 1015– (2001)
[5] Colombini F., Séminaire Équations aux Dérivées Partielles (2001)
[6] Colombini F., Contemp. Math. 368 pp 133– (2005)
[7] DOI: 10.1016/j.jde.2004.06.007 · Zbl 1134.35311
[8] Colombini F., Séminaire Équations aux Dérivées Partielles (2003)
[9] Depauw N., Séminaire Équations aux Dérivées Partielles (2003)
[10] DOI: 10.1007/BF01393835 · Zbl 0696.34049
[11] Hauray M., Ann. Inst. H. Poincaré Anal. Non Linéaire 20 pp 625– (2003) · Zbl 1028.35148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.