×

Benford’s law in power-like dynamical systems. (English) Zbl 1122.37008


MSC:

37A50 Dynamical systems and their relations with probability theory and stochastic processes
60A10 Probabilistic measure theory
37B55 Topological dynamics of nonautonomous systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aaronson J., Occupation times of sets of infinite measure for ergodic transformations (2002)
[2] Benford F., Proc. Amer. Philos. Soc. 78 pp 551–
[3] Berger A., Chaos and Chance (2001) · Zbl 0984.37001
[4] DOI: 10.3934/dcds.2005.13.219 · Zbl 1075.37003
[5] DOI: 10.1090/S0002-9947-04-03455-5 · Zbl 1123.37006
[6] Boyarski A., Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension (1997)
[7] Brown J., Fibonacci Quart. 8 pp 482–
[8] Davenport H., Michigan Math. J. 10 pp 311–
[9] DOI: 10.1007/978-1-4612-0991-1
[10] DOI: 10.1214/aop/1176995891 · Zbl 0364.10025
[11] DOI: 10.1016/S0378-4371(01)00497-6 · Zbl 0983.11046
[12] Hill T. P., Statis. Sci. 10 pp 354–
[13] DOI: 10.1016/S0378-4371(02)00519-8 · Zbl 0994.91017
[14] DOI: 10.1017/CBO9780511809187
[15] Kuipers L., Uniform Distribution of Sequences (1974) · Zbl 0281.10001
[16] Ley E., Amer. Statist. 50 pp 311–
[17] DOI: 10.1007/978-3-642-78324-1
[18] Nigrini M. J., Digital Analysis Using Benford’s Law: Tests and Statistics for Auditors (2000)
[19] DOI: 10.1007/978-1-4757-3210-8
[20] Raimi R., Amer. Math. Mon. 102 pp 322–
[21] Snyder M., Phys. Rev. E 64 pp 1–
[22] Schatte P., J. Infor. Process. Cyber. 24 pp 443–
[23] DOI: 10.1063/1.166498
[24] Walters P., An Introduction to Ergodic Theory (1981) · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.