Berger, Arno Benford’s law in power-like dynamical systems. (English) Zbl 1122.37008 Stoch. Dyn. 5, No. 4, 587-607 (2005). Summary: A generalized shadowing lemma is used to study the generation of Benford sequences under non-autonomous iteration of power-like maps \(T_j : x \mapsto \alpha_jx^{\beta_j} (1 - f_j(x))\), with \( \alpha_j, \beta_j > 0\) and \(f_j \in C^1,\;f_j(0) = 0\), near the fixed point at \(x = 0\). Under mild regularity conditions almost all orbits close to the fixed point asymptotically exhibit Benford’s logarithmic mantissa distribution with respect to all bases, provided that the family \((T_j)\) is contracting on average, i.e. \[ \lim_{n\to\infty}n^{-1} \sum_{j=1}^n\log\beta_j>0 \] . The technique presented here also applies if the maps are chosen at random, in which case the contraction condition reads \(\text{E}\log\beta > 0\). These results complement, unify and widely extend previous work. Also, they supplement recent empirical observations in experiments with and simulations of deterministic as well as stochastic dynamical systems. Cited in 4 Documents MSC: 37A50 Dynamical systems and their relations with probability theory and stochastic processes 60A10 Probabilistic measure theory 37B55 Topological dynamics of nonautonomous systems Keywords:dynamical system; shadowing; Benford’s law; uniform distribution mod 1 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aaronson J., Occupation times of sets of infinite measure for ergodic transformations (2002) [2] Benford F., Proc. Amer. Philos. Soc. 78 pp 551– [3] Berger A., Chaos and Chance (2001) · Zbl 0984.37001 [4] DOI: 10.3934/dcds.2005.13.219 · Zbl 1075.37003 · doi:10.3934/dcds.2005.13.219 [5] DOI: 10.1090/S0002-9947-04-03455-5 · Zbl 1123.37006 · doi:10.1090/S0002-9947-04-03455-5 [6] Boyarski A., Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension (1997) [7] Brown J., Fibonacci Quart. 8 pp 482– [8] Davenport H., Michigan Math. J. 10 pp 311– [9] DOI: 10.1007/978-1-4612-0991-1 · doi:10.1007/978-1-4612-0991-1 [10] DOI: 10.1214/aop/1176995891 · Zbl 0364.10025 · doi:10.1214/aop/1176995891 [11] DOI: 10.1016/S0378-4371(01)00497-6 · Zbl 0983.11046 · doi:10.1016/S0378-4371(01)00497-6 [12] Hill T. P., Statis. Sci. 10 pp 354– [13] DOI: 10.1016/S0378-4371(02)00519-8 · Zbl 0994.91017 · doi:10.1016/S0378-4371(02)00519-8 [14] DOI: 10.1017/CBO9780511809187 · doi:10.1017/CBO9780511809187 [15] Kuipers L., Uniform Distribution of Sequences (1974) · Zbl 0281.10001 [16] Ley E., Amer. Statist. 50 pp 311– [17] DOI: 10.1007/978-3-642-78324-1 · doi:10.1007/978-3-642-78324-1 [18] Nigrini M. J., Digital Analysis Using Benford’s Law: Tests and Statistics for Auditors (2000) [19] DOI: 10.1007/978-1-4757-3210-8 · doi:10.1007/978-1-4757-3210-8 [20] Raimi R., Amer. Math. Mon. 102 pp 322– [21] Snyder M., Phys. Rev. E 64 pp 1– [22] Schatte P., J. Infor. Process. Cyber. 24 pp 443– [23] DOI: 10.1063/1.166498 · doi:10.1063/1.166498 [24] Walters P., An Introduction to Ergodic Theory (1981) · Zbl 0475.28009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.