×

An annihilating-branching particle model for the heat equation with average temperature zero. (English) Zbl 1122.60085

The authors consider two species of particles performing random walks in a domain in \(\mathbb R^d\) with reflecting boundary conditions which annihilate on contact. When two particles of different species annihilate each other, particles of each species, chosen at random, produce children. Thus, the total number of particles of each type is preserved.
Assuming that initially the population consists of equal numbers of each species, the authors show that the system has a diffusive scaling limit in which the densities of the two species are approximated by the positive and negative of the solution of a heat equation. The proof is based on an observation that the microscopic evolution of the density \(\eta\) of the difference between the occupation numbers of the two types of particles has the form \(d\eta (t)=(\Delta +V(t))\eta(t) dt+dM(t)\) where \(M(t)\) is a martingale, \(\Delta\) is the discrete Laplace operator, and \(V(t)\) is the rate of annihilation.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F17 Functional limit theorems; invariance principles

References:

[1] Bañuelos, R. and Burdzy, K. (1999). On the “hot spots” conjecture of J. Rauch. J. Func. Anal. 164 1–33. · Zbl 0938.35045 · doi:10.1006/jfan.1999.3397
[2] Bañuelos, R. and Pang, M. (2006). Level sets of Neumann eigenfunctions. Indiana Univ. Math. J. 55 923–939. · Zbl 1106.35037 · doi:10.1512/iumj.2006.55.2808
[3] Burdzy, K. and Chen, Z. (2002). Coalescence of synchronous couplings. Probab. Theory Related Fields 123 553–578. · Zbl 1004.60080 · doi:10.1007/s004400200202
[4] Burdzy, K., Hołyst, R., Ingerman, D. and March, P. (1996). Configurational transition in a Fleming–Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A 29 2633–2642. · Zbl 0901.60054 · doi:10.1088/0305-4470/29/11/004
[5] Burdzy, K., Hołyst, R. and March, P. (2000). A Fleming–Viot particle representation of Dirichlet Laplacian. Comm. Math. Phys. 214 679–703. · Zbl 0982.60078 · doi:10.1007/s002200000294
[6] Conti, M., Terracini, S. and Verzini, G. (2005). Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195 524–560. · Zbl 1126.35016 · doi:10.1016/j.aim.2004.08.006
[7] Conti, M., Terracini, S. and Verzini, G. (2005). A variational problem for the spatial segregation of reaction–diffusion systems. Indiana Univ. Math. J. 54 779–815. · Zbl 1132.35397 · doi:10.1512/iumj.2005.54.2506
[8] Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics . Interscience Publishers, New York. · Zbl 0053.02805
[9] Cybulski, O., Babin, V. and Hołyst, R. (2004). Minimization of the Renyi entropy production in the stationary states of the Brownian process with matched death and birth rates. Phys. Rev. E 69 016110.
[10] Cybulski, O., Babin, V. and Hołyst, R. (2005). Minimization of the Renyi entropy production in the space partitioning process. Phys. Rev. E 71 046130. · doi:10.1103/PhysRevE.71.046130
[11] Cybulski, O., Matysiak, D., Babin, V. and Hołyst, R. (2005). Pattern formation in nonextensive thermodynamics: Selection criterion based on the Renyi entropy production. J. Chem. Phys. 122 174105.
[12] Dawson, D. A. (1993). Measure-valued Markov processes. École d’Été de Probabilités de Saint-Flour XXI—1991 1–260. Lecture Notes in Math. 1541 . Springer, Berlin. · Zbl 0799.60080 · doi:10.1007/BFb0084190
[13] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence . Wiley, New York. · Zbl 0592.60049
[14] Grieser, D. (2002). Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary Comm. Partial Diff. Eq. 27 1283–1299. · Zbl 1034.35085 · doi:10.1081/PDE-120005839
[15] Grigorescu, I. and Kang, M. (2004). Hydrodynamic limit for a Fleming–Viot type system. Stochastic Process. Appl. 110 111–143. · Zbl 1075.60124 · doi:10.1016/j.spa.2003.10.010
[16] Grigorescu, I. and Kang, M. (2006). Tagged particle limit for a Fleming–Viot type system. Electron. J. Probab. 11 311–331. · Zbl 1109.60083
[17] Hempel, R., Seco, L. A. and Simon, B. (1991). The essential spectrum of Neumann Laplacians on some bounded singular domains. J. Func. Anal. 102 448–483. · Zbl 0741.35043 · doi:10.1016/0022-1236(91)90130-W
[18] Morrey, C. (1966). Multiple Integrals in the Calculus of Variations . Springer, New York. · Zbl 0142.38701
[19] Netrusov, Yu. and Safarov, Yu. (2005). Weyl asymptotic formula for the Laplacian on domains with rough boundaries. Comm. Math. Phys. 253 481–509. · Zbl 1076.35085 · doi:10.1007/s00220-004-1158-8
[20] Protter, Ph. (1990). Stochastic Integration and Differential Equations. A New Approach . Springer, Berlin. · Zbl 0694.60047
[21] Stroock, D. and Varadhan, S. R. S. (1971). Diffusion processes with boundary conditions. Comm. Pure Appl. Math. 24 147–225. · Zbl 0227.76131 · doi:10.1002/cpa.3160240206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.