×

Incorporating topological derivatives into shape derivatives based level set methods. (English) Zbl 1122.65057

Summary: Shape derivatives and topological derivatives have been incorporated into level set methods to investigate shape optimization problems. The shape derivative measures the sensitivity of boundary perturbations while the topological derivative measures the sensitivity of creating a small hole in the interior domain. The combination of these two derivatives yields an efficient algorithm which has more flexibility in shape changing and may escape from a local optimal. Examples on finding the optimal shapes for maximal band gaps in photonic crystal and acoustic drum problems are demonstrated.

MSC:

65K10 Numerical optimization and variational techniques
49Q10 Optimization of shapes other than minimal surfaces
49M25 Discrete approximations in optimal control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G.; de Gournay, F.; Jouve, F.; Toader, A.-M., Structural optimization using topological and shape sensitivity via a level set method, Contr. Cybernet., 34, 59-80 (2005) · Zbl 1167.49324
[2] Allaire, G.; Jouve, F.; Toader, A.-M., A level-set method for shape optimization, C. R. Acad. Sci. Paris, Ser. I, 334, 1125-1130 (2002) · Zbl 1115.49306
[3] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys, 194, 363-393 (2004) · Zbl 1136.74368
[4] H. Ammari, J.-C. Nedelec, Perturbations of eigenvalue problems in electromagnetics, C.M.A.P. Report 367, 1997.; H. Ammari, J.-C. Nedelec, Perturbations of eigenvalue problems in electromagnetics, C.M.A.P. Report 367, 1997. · Zbl 0884.35111
[5] Amstutz, S., Sensitivity analysis with respect to a local perturbation of the material property, Asympt. Anal., 49, 87-108 (2006) · Zbl 1187.49036
[6] Amstutz, S.; Andrae, H., A new algorithm for topology optimization using a level-set method, J. Comput. Phys., 216, 573-588 (2006) · Zbl 1097.65070
[7] Burger, M.; Hackl, B.; Ring, W., Incorporating topological derivatives into level set methods, J. Comput. Phys., 194, 344-362 (2004) · Zbl 1044.65053
[8] Chan, T.; Vese, L., Active contours without edges, IEEE Trans. Image Process., 10, 266-277 (2001) · Zbl 1039.68779
[9] Chen, S.; Merriman, B.; Osher, S.; Smereka, P., A simple level set method for solving Stefan problems, J. Comput. Phys., 135, 8-29 (1997) · Zbl 0889.65133
[10] Cox, S. J.; Dobson, D. C., Maximizing band gaps in two-dimensional photonic crystals, SIAM J. Appl. Math., 59, 2108-2120 (1999) · Zbl 1027.78521
[11] Garreau, S.; Guillaume, P.; Masmoudi, M., The topological asymptotic for PDE systems: the elasticity case, SIAM J. Contr. Optim., 39, 1756-1778 (2001) · Zbl 0990.49028
[12] F. Gibou, R. Fedkiw, Fast hybrid \(k\); F. Gibou, R. Fedkiw, Fast hybrid \(k\)
[13] M. Hassine, S. Jan, M. Masmoudi, From differential calculus to 0-1 optimization, in: European Congress on Computational Methods in Applied Science and Engineering, July, 2004.; M. Hassine, S. Jan, M. Masmoudi, From differential calculus to 0-1 optimization, in: European Congress on Computational Methods in Applied Science and Engineering, July, 2004. · Zbl 1139.49039
[14] Kao, C.-Y.; Osher, S.; Yablonovitch, E., Maximizing band gaps in two dimensional photonic crystals by using level set methods, Appl. Phys. B, 81, 235-244 (2005)
[15] Murat, F.; Simon, S., Etudes de problems d’optimal design, Lect. Notes Comp. Sci., 41, 54-62 (1976) · Zbl 0334.49013
[16] Novotny, A.; Feijoo, R.; Taroco, E.; Padra, C., Topological sensitivity analysis, Comput. Methods Appl. Mech. Eng., 192, 803-829 (2003) · Zbl 1025.74025
[17] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2002), Springer: Springer New York
[18] Osher, S.; Santosa, F., Level set methods for optimization problems involving geometry and constraints, J. Comput. Phys., 171, 272-288 (2001) · Zbl 1056.74061
[19] Osher, S.; Sethian, J. A., Fronts propagating with curvature dependent speed; algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[20] Sethian, J.; Wiegmann, A., Structural boundary design via level set method and immersed interface methods, J. Comput. Phys., 163, 489-528 (2000) · Zbl 0994.74082
[21] Shu, C.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[22] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM J. Contr. Optim., 37, 1251-1272 (1999) · Zbl 0940.49026
[23] Sokolowski, J.; Zolesio, J.-P., Introduction to Shape Optimization: Shape Sensitivity Analysis (1992), Springer: Springer Heidelberg · Zbl 0761.73003
[24] B. Song, T. Chan, A fast algorithm for level set based optimization, CAM 02-68, UCLA, December 2002.; B. Song, T. Chan, A fast algorithm for level set based optimization, CAM 02-68, UCLA, December 2002.
[25] Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S., An improved level set method for incompressible two-phase flows, Comput. Fluids, 27, 663-680 (1998) · Zbl 0967.76078
[26] Vese, L.; Chan, T., A multiphase level set framework for image segmentation using the Mumford and Shah model, Int. J. Comput. Vision, 50, 271-293 (2002) · Zbl 1012.68782
[27] X. Wang, Y. Mei, M.Y. Wang, Incorporating topological derivatives into level set methods for structural topology optimization, in: T.L. et al. (Eds.), Optimal Shape Design and Modeling, Polish Academy of Sciences, Warsaw, 2004, pp. 145-157.; X. Wang, Y. Mei, M.Y. Wang, Incorporating topological derivatives into level set methods for structural topology optimization, in: T.L. et al. (Eds.), Optimal Shape Design and Modeling, Polish Academy of Sciences, Warsaw, 2004, pp. 145-157.
[28] Zhao, H.-K.; Chan, T.; Merriman, B.; Osher, S., A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179-195 (1996) · Zbl 0860.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.