zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The improvements of modified Newton’s method. (English) Zbl 1122.65332
Summary: We improve some third-order modifications of Newton’s method and obtain many new methods for solving non-linear equations. The new methods have the order of convergence five or six. Per iteration these methods require two evaluations of the function and two evaluations of its first derivative and therefore the efficiency of the new methods may also be improved. These methods can compete with Newton’s method, as we show in some examples.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Ostrowski, A. M.: Solution of equations in eucilidean and Banach space. (1973) · Zbl 0304.65002
[2] Weerakoon, S.; Fernando, T. G. I.: A variant of Newton’s method with accelerated third-order convergence. Appl. math. Lett. 13, 87-93 (2000) · Zbl 0973.65037
[3] Frontini, M.; Sormani, E.: Some variants of Newton’s method with third-order convergence. Appl. math. Comput. 140, 419-426 (2003) · Zbl 1037.65051
[4] Özban, A. Y.: Some new variants of Newton’s method. Appl. math. Lett. 17, 677-682 (2004) · Zbl 1065.65067
[5] Frontini, M.; Sormani, E.: Modified Newton’s method with third-order convergence and multiple roots. J. comput. Appl. math. 156, 345-354 (2003) · Zbl 1030.65044
[6] Homeier, H. H. H.: A modified Newton method for rootfinding with cubic convergence. J. comput. Appl. math. 157, 227-230 (2003) · Zbl 1070.65541
[7] Homeier, H. H. H.: A modified Newton method with cubic convergence: the multivariate case. J. comput. Appl. math. 169, 161-169 (2004) · Zbl 1059.65044
[8] Frontini, M.; Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. math. Comput. 149, 771-782 (2004) · Zbl 1050.65055
[9] Homeier, H. H. H.: On Newton-type methods with cubic convergence. J. comput. Appl. math. 176, 425-432 (2005) · Zbl 1063.65037
[10] Jisheng Kou, Yitian Li, Xiuhua Wang, Third-order modification of Newton’s method, J. Comput. Appl. Math. (2006) doi:10.1016/j.cam.2006.03.022. · Zbl 1172.65021
[11] Jisheng Kou, Yitian Li, Xiuhua Wang, Some modifications of Newton’s method with fifth-order convergence, J. Comput. Appl. Math., in press, doi:10.1016/j.cam.2006.10.072. · Zbl 1130.41005
[12] Gautschi, W.: Numerical analysis: an introduction. (1997) · Zbl 0877.65001