×

New exact solutions for the ZK-MEW equation by using symbolic computation. (English) Zbl 1122.65391

Summary: The extended tanh-method is used to establish exact travelling wave solutions of the Zakharov-Kuznetsov-Modified Equal-Width (ZK-MEW) equation. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[2] Gu, C. H., Soliton Theory and Its Application (1990), Zhejiang Science and Technology Press: Zhejiang Science and Technology Press Zhejiang
[3] Wadati, M., J. Phys. Soc. Jpn., 38, 681 (1975)
[4] Matveev, V. A.; Salle, M. A., Darboux Transformations and Solitons (1991), Springer-Verlag: Springer-Verlag Heidelberg, Berlin · Zbl 0744.35045
[5] Wang, D. S.; Zhang, H. Q., Chaos, Solitons Fractals, 25, 601 (2005)
[6] Wang, M. L., Phys. Lett. A, 26, 353 (2000)
[7] Yan, C. T., Phys. Lett. A, 25, 274 (2000)
[8] Peng, Y. Z., J. Phys. Soc. Jpn., 73, 1156 (2004)
[9] Inc, M., Chaos, Solitons Fractals, 29, 499 (2006)
[10] Dehghan, M.; Tatari, M., Phys. Scripta, 72, 425 (2005)
[11] He, J. H., Chaos, Solitons Fractals, 19, 847 (2004)
[12] He, J. H., Int. J. Nonlinear Mech., 37, 315 (2002)
[13] Wazwaz, A. M., Commun. Non Sci. Numer. Simul., 10, 597 (2005)
[14] Li, B., Czech. J. Phys., 53, 283 (2003)
[15] Zaki, S. I., Comput. Phys. Commun., 126, 597 (2000)
[16] Wazwaz, A. M., Commun. Non Sci. Numer. Simul., 11, 148 (2006)
[17] Gradner, L. R.T.; Gardner, G. A.; Ayoub, F. A.; Amein, N. K., Commun. Numer. Methods Eng., 13, 583 (1998)
[18] Li, B., Appl. Math. Comput., 146, 653 (2003)
[19] Wazwaz, A. M., Int. J. Computer Math., 82, 699 (2005)
[20] Zhao, X.; Zhou, H.; Tang, Y.; Jia, H., Appl. Math. Comput., 181, 634 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.