×

Homotopy perturbation method for fractional KdV equation. (English) Zbl 1122.65397

Summary: The homotopy perturbation method is directly applied to derive approximate solutions of the fractional Korteweg-de Vries (KdV) equation. The results reveal that the proposed method is very effective and simple for solving approximate solutions of fractional differential equations.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations
45K05 Integro-partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Soliton, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press New York · Zbl 0762.35001
[2] Taha, T. R.; Ablowitz, M. J., Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical Korteweg-de Vries equation, J. Comput. Phys., 55, 2, 231 (1984) · Zbl 0541.65083
[3] Matveev, V. B.; Salle, M. A., Darboux Transformation and Solitons (1991), Springer: Springer Berlin · Zbl 0744.35045
[4] Clarkson, P. A.; Kruskal, M. D., New similiarity reductions of Boussinesq equation, J. Math. Phys., 30, 2202 (1989)
[5] Conte, R.; Musette, M., Painleve analysis and Bäcklund transformation in the Kuramoto-Sivashinsky equation, J. Phys. A: Math. Gen., 22, 169 (1989) · Zbl 0687.35087
[6] Lou, S. Y.; Lu, J. Z., Special solutions from variable separation approach: Davey-Stewartson equation, J. Phys. A: Math. Gen., 29, 4029 (1996)
[7] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277, 212 (2000) · Zbl 1167.35331
[8] Yan, Z. Y., New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Phys. Lett. A, 292, 100 (2001) · Zbl 1092.35524
[9] Wang, Q.; Chen, Y.; Zhang, H. Q., An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation, Phys. Lett. A, 340, 411 (2005) · Zbl 1145.35358
[10] Wang, Q.; Chen, Y.; Zhang, H. Q., A new Jacobi elliptic function rational expansion method and its application to (1+1)-dimensional dispersive long wave equation, Chaos Solitons Fract., 23, 477 (2005) · Zbl 1072.35510
[11] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0802.65122
[12] Wazwaz, A. M., Partial Differential Equations: Methods and Applications (2002), Balkema Publishers: Balkema Publishers The Netherlands · Zbl 0997.35083
[13] Liao, S. J., Beyond Perturbation: Introduction to Homotopy Analysis Method (2003), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton
[14] He, J. H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fract., 19, 4, 847 (2004) · Zbl 1135.35303
[15] He, J. H., An approximate solution technique dependingupon an artificial parameter, Commun. Nonlinear Sci. Numer. Simulat., 3, 2, 92 (1998) · Zbl 0921.35009
[16] He, J. H., Homotopy perturbation techique, Comput. Meth. Appl. Mech. Eng., 178, 257 (1999) · Zbl 0956.70017
[17] He, J. H., Perturbation Methods: Basic and Beyond (2006), Elsevier: Elsevier Amsterdam
[18] El-Shahed, M., Application of He’s homotopy perturbation method to Volterra’s integro-differential equation, Int. J. Nonlinear Sci. Numer. Simul., 6, 2, 163 (2005) · Zbl 1401.65150
[19] West, B. J.; Bolognab, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer: Springer New York
[20] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[21] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[22] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[23] Caputo, M., Linear models of dissipation whose Q is almost frequency independent, Part II, J. Roy. Astr. Soc., 13, 529 (1967)
[24] Momani, S., An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul., 70, 110 (2005) · Zbl 1119.65394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.