×

zbMATH — the first resource for mathematics

Dynamics of variable systems and Lie groups. (Russian, English) Zbl 1122.70332
Prikl. Mat. Mekh. 68, No. 6, 899-905 (2004); translation in J. Appl. Math. Mech. 68, No. 6, 803-808 (2004).
The paper deals with mechanical systems whose configuration space is a Lie group and whose Lagrangian is invariant with respect to the left shifts on this group. It is assumed that system masses geometry can be changed under the action of only internal forces. Conditions are discussed under which due to the masses geometry change the system can be transferred from the initial state to any prescribed one.

MSC:
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
76B99 Incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kozlov, V.V., The general theory of vortices, () · Zbl 0989.80004
[2] Liouville, J., Développements sur un chapitre de la “mechanique” de Poisson, J. math. pures et appl., 3, 1-25, (1858)
[3] Kozlov, V.V.; Ramodanov, S.M., The motion of a variable body in an ideal fluid, Prikl. mat. mekh., 65, 4, 592-601, (2001) · Zbl 1046.76008
[4] Kozlov, V.V.; Yaroshchuk, V.A., Invariant measures of the Euler-Poincaré equations on unimodular groups, Vestnik MGU ser. 1. matematika, mekhanika, 2, 91-95, (1993) · Zbl 0804.58034
[5] Kozlov, V.V., The frozen-in condition for a direction field, small denominators and chaotization of steady flows of a viscous fluid, Prikl. mat. mekh., 63, 2, 237-244, (1999) · Zbl 0937.37030
[6] Naimark, M.A., Linear representations of the Lorenz group, (1958), Nauka Berlin · Zbl 0100.12001
[7] Rashevskii, P.K., The connectability of any two points of a completely non-holonomic space by an admissible curve, Uch. zap. mosk. GoS. ped. inst. im. liebknecht. ser. fiz.-mat. nauk, 2, 83-94, (1938)
[8] Chow, W.L., Über systeme von linearen partielle differentialgleichungen erster ordnung, Math. ann., 117, 98-105, (1939) · Zbl 0022.02304
[9] Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, Ye.F., Mathematical theory of optimal processes, (1961), Fizmatgiz Moscow · Zbl 0102.31901
[10] Rauschenbach, B.V.; Tokar’, Ye.N., Orientation control of spacecraft, (1974), Nauka Moscow
[11] Marey, M., Des mouvements que certains animaux exécutent pour retomber sur leurs pieds, lorsqu’ils sont précipités d’un lieu élevé, C. R. acad. sci. Paris, 119, 714-717, (1894) · JFM 25.1452.01
[12] Kane, T.R.; Scher, M.P., A dynamical explanation of the falling cat phenomenon, Intern. J. solids structures, 5, 7, 663-670, (1969)
[13] Enos, M.J., On an optimal control problem on SO(3) × SO(3) and the falling cat, Fields inst. communications, 1, 75-111, (1993) · Zbl 0786.70021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.