zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-level primal-dual proximal decomposition technique to solve large scale optimization problems. (English) Zbl 1122.90061
Summary: We describe a primal-dual application of the proximal point algorithm to nonconvex minimization problems. Motivated by the work of {\it J. E. Spingarn} [Math. Program. 32, 199--223 (1985; Zbl 0565.90058)] and more recently by the work of {\it A. Hamdi} et al. [Lect. Notes Econ. Math. Syst. 452, 90--104 (1997; Zbl 0882.65055)] about the primal resource-directive decomposition scheme to solve nonlinear separable problems. This paper discusses some local results of a primal-dual regularization approach that leads to a decomposition algorithm.

90C26Nonconvex programming, global optimization
Full Text: DOI
[1] Antipin, A. S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i mat. Metody 12, 1164-1173 (1976)
[2] Bertsekas, D. P.: Convexification procedures and decomposition methods for nonconvex optimization problems. Journal of optimization theory and applications 29, 169-197 (1979) · Zbl 0389.90080
[3] Bertsekas, D. P.: Constrained optimization and Lagrange multipliers method. (1982) · Zbl 0572.90067
[4] Bertsekas, D. P.; Tsitsiklis, J. N.: Parallel and distributed computation. (1989) · Zbl 0743.65107
[5] Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Computational optimization and applications 1, 92-111 (1992) · Zbl 0763.90071
[6] Hamdi, A.; Mahey, P.; Dussault, J. P.: A new decomposition method in nonconvex programming via separable augmented Lagrangians. Lecture notes in economics and mathematical systems 452, 90-104 (1997) · Zbl 0882.65055
[7] Hamdi, A.; Mahey, P.: Separable diagonalized multiplier method for decomposing nonlinear programs. Computational and applied mathematics 19, No. 1, 1-29 (2000) · Zbl 1119.90341
[8] Hestenes, M. R.: Optimization theory: the finite dimensional case. (1981)
[9] Lasdon, L. S.: Optimization for large systems. (1970) · Zbl 0224.90038
[10] Lions, J. L.; Temam, R.: Eclatement et dĂ©centralisation en calcul des variations. Lecture notes in mathematics 32, 196-217 (1970) · Zbl 0223.49033
[11] Mahey, P.; Oualibouch, S.; Pham, D. T.: Proximal decomposition on the graph of a maximal monotone operator. SIAM journal on optimization 5, No. 2, 454-466 (1995) · Zbl 0834.90105
[12] Mahey, P.; Dussault, J. P.; Benchakroun, A.; Hamdi, A.: Adaptive scaling and convergence rates of a separable augmented Lagrangian algorithm. Lecture notes in economics and mathematical systems (1999) · Zbl 0982.90050
[13] Rockafellar, R. T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of operations research 1, 97-116 (1976) · Zbl 0402.90076
[14] Spingarn, J. E.: Applications of the method of partial inverse to convex programming decomposition. Mathematical programming 32, 199-223 (1985) · Zbl 0565.90058
[15] Stephanopoulos, G.; Westerberg, A. W.: The use of hestenes’ method of multipliers to resolve dual gaps in engineering system optimization. Journal of optimization theory and applications 15, 285-309 (1975) · Zbl 0278.49040
[16] Shin, L.: Complete decomposition algorithm for nonconvex separable optimization problems and applications. Automatica 28, No. 6, 1249-1254 (1992) · Zbl 0770.90066
[17] Tanikawa, A.; Mukai, H.: A new technique for nonconvex primal--dual decomposition of a large-scale separable optimization problem. IEEE transactions on automatic control 30, No. 2, 133-143 (1985) · Zbl 0553.90087
[18] Tatjewski, P.; Engelmann, B.: Two-level primal--dual decomposition technique for large-scale nonconvex optimization problems with constraints. Journal of optimization theory and applications 64, No. 1, 183-205 (1990) · Zbl 0713.90059