Higher order sliding mode control based on optimal approach of an electropneumatic actuator. (English) Zbl 1122.93036

Summary: The synthesis and the experimental implementation of robust higher order sliding mode controllers for an electropneumatic actuator are presented. These controllers are based on a recent approach and are designed in monovariable (position control) and multivariable (position and pressure control) contexts. The controllers’ robustness is analysed with respect to parameters uncertainties and load disturbances.


93C10 Nonlinear systems in control theory
93C95 Application models in control theory
93C15 Control/observation systems governed by ordinary differential equations
93C35 Multivariable systems, multidimensional control systems
93C41 Control/observation systems with incomplete information
Full Text: DOI HAL


[1] DOI: 10.1109/9.661074 · Zbl 0904.93003
[2] Belgharbi, M, Thomasset, D, Scavarda, S and Sesmat, S. 1999. Analytical model of the flow stage of a pneumatic servo-distributor for simulation and nonlinear control. Scandinavian International Conference on Fluid Power SICFP’99. 1999, Tampere, Finland. pp.847–860.
[3] Bouri, M, Thomasset, D and Scavarda, S. 1996. Integral sliding mode controller of a rotational servodrive. JHPS International Symposium on Fluid Power. 1996, Tokyo, Japan. pp.145–150.
[4] DOI: 10.1109/87.911388
[5] Brun X, Journal of Systems and Control Engineering 213 pp 387– (1999)
[6] Brun, X, Sesmat, S, Thomasset, D and Scavarda, S. 1999b. A comparative study between two control laws of an electopneumatic actuator. European Control Conference ECC’99. 1999b, Karlsruhe, Germany. CD-ROM Ref. F1000-5
[7] Brun, X, Thomasset, D, Sesmat, S and Scavarda, S. 1999c. Limited energy consumption in positioning control of electropneumatic actuator. Bath Workshop on Power Transmission and Motion Control. 1999c, Bath, England. pp.199–211.
[8] Brun, X and Thomasset, D. 2000. Choice of control law in electropneumatics. Expertise using an industrial benchmark and some new trends. Conference on Decision and Control CDC’00. 2000, Sydney, Australia. CD-ROM Ref.CD009702
[9] DOI: 10.1016/S0967-0661(02)00030-8
[10] Castro-Linarès, R, Glumineau, A, Laghrouche, S and Plestan, F. 2004. Higher order sliding mode observer-based control. IFAC Symposium on System, Structure and Control SSSC 2004. 2004, Oaxaca, Mexico. · Zbl 1137.93338
[11] Edge KA, Journal of Systems and Control Engineering 211 pp 91– (1997)
[12] Emelyanove SV, Differential Equations 29 pp 1627– (1993)
[13] Filippov AF, Differential Equations with Discontinuous Right-Hand Side (1988)
[14] DOI: 10.1007/BFb0027563
[15] DOI: 10.1016/0167-6911(90)90030-X · Zbl 0692.93043
[16] DOI: 10.1016/0967-0661(96)00106-2
[17] DOI: 10.1016/S0967-0661(97)00135-4
[18] Laghrouche, S, Plestan, F, Glumineau, A and Boisliveau, R. 2003a. Robust second order sliding mode control for a permanent magnet synchronous motor. American Control Conference ACC’03. 2003a, Denver, Colorado. pp.4071–4076.
[19] Laghrouche, S, Plestan, F and Glumineau, A. 2003b. Higher order sliding mode control based on optimal linear quadratic control. European Control Conference ECC’03. 2003b, Cambridge, England. · Zbl 1137.93338
[20] Laghrouche, S, Smaoui, M, Brun, X and Plestan, F. 2004. Second order sliding mode controllers for pneumatic actuators. American Control Conference ACC’04. 2004, Boston, Massachusetts.
[21] DOI: 10.1080/00207179308923053 · Zbl 0789.93063
[22] DOI: 10.1109/9.948475 · Zbl 1001.93011
[23] DOI: 10.1080/0020717031000099029 · Zbl 1049.93014
[24] Lewis FL, Optimal Control,, 2. ed. (1995)
[25] MacCloy D, Control of Fluid Power: Analysis and Design (1980)
[26] DOI: 10.1016/0967-0661(95)00127-G
[27] DOI: 10.1109/87.317984
[28] Plestan, F, Laghrouche, S and Glumineau, A. 2004. Higher order sliding mode control for MIMO nonlinear systems. International Workshop on Variable Structure Systems VSS’04. 2004, Vilanova i la Geltrù, Spain. · Zbl 1137.93338
[29] DOI: 10.1109/TAC.1969.1099101
[30] Sesmat, S and Scavarda, S. 1996. Static characteristics of a three way servovalve. Conference on Fluid Power Technology. 1996, Aachen, Germany. pp.643–652.
[31] Shearer JL, Trans. Am. Soc. Mech. Eng. 78 pp 233– (1956)
[32] DOI: 10.1016/0167-6911(92)90069-5 · Zbl 0783.93052
[33] Sira-Ramirez H, IEE Control, Series 66, in: Variable Structure Systems: From Principles to Implementation pp 157– (2004)
[34] DOI: 10.1080/00207178408933284 · Zbl 0541.93034
[35] Smaoui, M, Brun, X and Thomasset, D. 2004a. A robust multivariable control for an electropneumatic system using backstepping design. IFAC Symposium on Nonlinear Control Systems NOLCOS. 2004a, Stuttgart, Germany. pp.1193–1198.
[36] Smaoui, M, Brun, X, Thomasset, D and de Giorgi, R. 2004b. Expérimentation d’une commande multivariable par modes glissants d’ordre supérieur sur un système électropneumatique” [in French]. Conférence Internationale Francophone d’Automatique CIFA. 2004b, Douz, Tunisia. CD-ROM Ref. 84
[37] Smaoui M, Ph.D. Thesis (in French) pp 191– (2004)
[38] Utkin VI, Sliding Mode in Control and optimization (1992)
[39] DOI: 10.1016/S0167-6911(98)00036-X · Zbl 0909.93005
[40] Yang, L and Lilly, JH. 2003. Sliding mode tracking for pneumatic muscle actuators in bicep/tricep pair configuration. American Control Conference ACC’03. 2003, Denver, Colorado. pp.4669–4674.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.